MHB Solving the System of Equations for $a^2+b^2+c^2$

AI Thread Summary
The discussion revolves around solving the system of equations involving integers \(a\), \(b\), and \(c\) defined by \(a^2b + b^2c + c^2a = 2186\) and \(ab^2 + bc^2 + ca^2 = 2188\). A partial solution suggests that if \(a = b-1\) and \(c = b+1\), the equations simplify to yield a potential solution of \((a, b, c) = (8, 9, 10)\), resulting in \(a^2 + b^2 + c^2 = 245\). However, this solution is criticized for relying on guesswork and not proving uniqueness. The discussion also touches on the importance of verifying solutions and correcting any typos in the equations presented. The conclusion emphasizes the need for rigorous proof in mathematical solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
 
Mathematics news on Phys.org
anemone said:
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]
 
Opalg said:
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]

Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a)=2186$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
 
Last edited:
anemone said:
Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$
$a=8$ then $(1)=2286\neq 2186$
 
Last edited:
Albert said:
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186--(1)$
if $a=8$ then $(1)=2286\neq 2186$
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct
 
Last edited:
Albert said:
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct

Hey Albert, please don't worry about pointing out the typo(s) that I've made because not only I won't upset about it, I actually appreciate your effort (and willingness) to check my solution!

Thank you Albert and I will edit my solution so that the solution is perfect now! :o
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
9
Views
2K
Replies
10
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
19
Views
3K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top