MHB Solving the System of Equations for $a^2+b^2+c^2$

Click For Summary
The discussion revolves around solving the system of equations involving integers \(a\), \(b\), and \(c\) defined by \(a^2b + b^2c + c^2a = 2186\) and \(ab^2 + bc^2 + ca^2 = 2188\). A partial solution suggests that if \(a = b-1\) and \(c = b+1\), the equations simplify to yield a potential solution of \((a, b, c) = (8, 9, 10)\), resulting in \(a^2 + b^2 + c^2 = 245\). However, this solution is criticized for relying on guesswork and not proving uniqueness. The discussion also touches on the importance of verifying solutions and correcting any typos in the equations presented. The conclusion emphasizes the need for rigorous proof in mathematical solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
 
Mathematics news on Phys.org
anemone said:
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]
 
Opalg said:
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]

Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a)=2186$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
 
Last edited:
anemone said:
Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$
$a=8$ then $(1)=2286\neq 2186$
 
Last edited:
Albert said:
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186--(1)$
if $a=8$ then $(1)=2286\neq 2186$
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct
 
Last edited:
Albert said:
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct

Hey Albert, please don't worry about pointing out the typo(s) that I've made because not only I won't upset about it, I actually appreciate your effort (and willingness) to check my solution!

Thank you Albert and I will edit my solution so that the solution is perfect now! :o
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K