MHB Solving the System of Equations for $a^2+b^2+c^2$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
 
Mathematics news on Phys.org
anemone said:
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]
 
Opalg said:
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]

Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a)=2186$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
 
Last edited:
anemone said:
Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$
$a=8$ then $(1)=2286\neq 2186$
 
Last edited:
Albert said:
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186--(1)$
if $a=8$ then $(1)=2286\neq 2186$
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct
 
Last edited:
Albert said:
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct

Hey Albert, please don't worry about pointing out the typo(s) that I've made because not only I won't upset about it, I actually appreciate your effort (and willingness) to check my solution!

Thank you Albert and I will edit my solution so that the solution is perfect now! :o
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
9
Views
1K
Replies
10
Views
930
Replies
2
Views
1K
Replies
3
Views
2K
Replies
19
Views
3K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top