MHB Solving the System of Equations for $a^2+b^2+c^2$

AI Thread Summary
The discussion revolves around solving the system of equations involving integers \(a\), \(b\), and \(c\) defined by \(a^2b + b^2c + c^2a = 2186\) and \(ab^2 + bc^2 + ca^2 = 2188\). A partial solution suggests that if \(a = b-1\) and \(c = b+1\), the equations simplify to yield a potential solution of \((a, b, c) = (8, 9, 10)\), resulting in \(a^2 + b^2 + c^2 = 245\). However, this solution is criticized for relying on guesswork and not proving uniqueness. The discussion also touches on the importance of verifying solutions and correcting any typos in the equations presented. The conclusion emphasizes the need for rigorous proof in mathematical solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
 
Mathematics news on Phys.org
anemone said:
$a,\,b,\,c$ are integers that satisfy the system of equations below:

$a^2b+b^2c+c^2a=2186$

$ab^2+bc^2+ca^2=2188$

Evaluate $a^2+b^2+c^2$.
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]
 
Opalg said:
Partial solution:
[sp]If $x$ is the smallest of the three numbers $a,\,b,\,c$ then $3x^3 \leqslant 2186$. And if $y$ is the largest of the three numbers then $3y^3 \geqslant 2188$. Having seen that, I noticed that $3\cdot9^3 = 2187.$ It follows that $x<9$ and $y>9.$

The next step was pure guesswork. I noticed that if $a = b-1$ and $c=b+1$ then $$a^2b+b^2c+c^2a = (b-1)^2b + b^2(b+1) + (b+1)(b^2-1) = 3b^3 - 1,$$ $$ab^2+bc^2+ca^2 = (b-1)b^2 + b(b+1)^2 + (b^2-1)(b-1) = 3b^3+1.$$

It follows that $(a,b,c) = (8,9,10)$ is a solution, with $a^2+b^2+c^2 = 64+81+100 = 245.$

Of course, that can't count as a proper solution, because it relies on a lucky guess. More seriously, it does not show that the solution is unique.[/sp]

Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a)=2186$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
 
Last edited:
anemone said:
Thank you Opalg for participating and also your solution, the educated guess is spot on!

Solution of other:

If we subtract the first equation from the second, we get:

$ab(b-a)+bc(c-b)+ac(a-c)=2$

Now setting $a=b$ turns the LHS into $a^2(a-a)+ac(c-a)+ac(a-c)$, which after simplifying equals to 0. This means $a-b$ is a factor of the LHS.

Similarly, $b-c$ and $c-a$ are also factors. Therefore we get the factored equation $(a-b)(b-c)(c-a)=2$.

Note that $(a-b)+(b-c)+(c-a)=0$, the ordered triplet $(a-b),\,(b-c),\,(c-a)$ must be a permutation of $(2,\,-1,\,-1)$. Without loss of generality, let

$a-b=-1$ and $c=a+2$.

This gives $b=a+1$. Substituting these values into the first equation gives

$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$

$a(a^2+3a+3)=2^3\cdot 7 \cdot 13$

and since $a$ is an integer, $a=8$ makes the equations true. Therefore $(a,\,b,\,c)=(8,\,9,\,10)$.

Since our WLOG will not affect the values of the triplet (but rather their order), the final answer is $a^2+b^2+c^2=8^2+9^2+10^2=245$.
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186----(1)$
$a=8$ then $(1)=2286\neq 2186$
 
Last edited:
Albert said:
$a^2(a+1)+(a+1)^2(a+2)+(a+2)^2(a+1)=2186--(1)$
if $a=8$ then $(1)=2286\neq 2186$
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct
 
Last edited:
Albert said:
there must have a typo in this answer here it is: (1) sould be : $a^2(a+1)+(a+1)^2(a+2)+(a+2)^2a=2186----(1)$
sorry It seemed to be a little bit picky. it is my habit to check the answer to make sure it is correct

Hey Albert, please don't worry about pointing out the typo(s) that I've made because not only I won't upset about it, I actually appreciate your effort (and willingness) to check my solution!

Thank you Albert and I will edit my solution so that the solution is perfect now! :o
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
9
Views
2K
Replies
10
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
19
Views
3K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top