A Solving this first-order differential equation for neutron abundance

AI Thread Summary
The discussion centers on solving a first-order differential equation for neutron abundance, expressed as dX_n/dt = λ - (λ + ȧλ)X_n, where λ is the neutron production rate and ȧλ is the neutron destruction rate. The user has attempted numerical methods like Euler and RK4 but encountered divergence in solutions for X_n. A suggestion is made that the equation may be classified as 'very stiff', recommending the use of the Gear method for more stable solutions. Additional resources, including a link to a relevant research paper, are provided for further assistance. The user expresses gratitude for the help received in addressing the problem.
gurbir_s
Messages
11
Reaction score
4
The time rate of change of neutron abundance ##X_n## is given by
$$\frac{dX_n}{dt} = \lambda - (\lambda + \hat\lambda)X_n$$
where ##\lambda## is neutron production rate per proton and ##\hat\lambda## is neutron destruction rate per neutron.
Given the values of ##\lambda## and ##\hat\lambda## at various values of time, I need to calculate ##X_n##.I have also calculated values of ##\lambda 's## at intermediate times. I have tried using Euler method and RK4 method to solve this equation, but the solutions for ##X_n## diverge to inf values.

[Here][2] is the link to the complete research paper "Primordial Helium Abundance and the Primordial Fireball. II" by P.J.E. Peebles.

Any help or idea on how to solve it will be appreciated : ) [1]: Data for ##\lambda 's## https://i.stack.imgur.com/lnW9M.png
[2]: https://ui.adsabs.harvard.edu/abs/1966ApJ...146..542P/abstract
 
Physics news on Phys.org
hello @gurbir_s ,
:welcome: ##\qquad ## !​

It seems ([edit]: :wink: (*) ) to me you have a differential equation at hand of the so-called 'very stiff' category.
I don't know what tools you have available, but you can try to find an impementation of the Gear method.

(*) the 'primordeal fireball' in the title says it all[edit2]:
A little googling: in https://globaljournals.org/GJSFR_Volume13/2-Numerical-Approach-for-Solving-Stiff.pdf
I find
12. Hindmarsh, A. C. and Gear C.W. (1974), “Ordinary differential equation system solver”, L.L.L. Report UCID -30001, rev. 3, l.l.l. (www.netlib.org/ode/epsode.f)
Good old Fortran !

##\ ##
 
Last edited:
BvU said:
hello @gurbir_s ,
:welcome: ##\qquad ## !​

It seems ([edit]: :wink: (*) ) to me you have a differential equation at hand of the so-called 'very stiff' category.
I don't know what tools you have available, but you can try to find an impementation of the Gear method.

(*) the 'primordeal fireball' in the title says it all[edit2]:
A little googling: in https://globaljournals.org/GJSFR_Volume13/2-Numerical-Approach-for-Solving-Stiff.pdf
I find Good old Fortran !

##\ ##
Thank you : ) @BvU. I was struggling with this problem from quite a few days.
 
I think it's easist first to watch a short vidio clip I find these videos very relaxing to watch .. I got to thinking is this being done in the most efficient way? The sand has to be suspended in the water to move it to the outlet ... The faster the water , the more turbulance and the sand stays suspended, so it seems to me the rule of thumb is the hose be aimed towards the outlet at all times .. Many times the workers hit the sand directly which will greatly reduce the water...
I don't need cloth simulation. I need to simulate clothing meshes. Made of triangles and I need an answer that someone with High School math can understand. I am actually using the time it takes for someone to answer to create a model with less geometry than the one I have been using. I want clothing that can be removed on a model that will be animated. I don't need stretching or wrinkles on my meshes, I just need gravity. I have an idea of how I could do it, but I don't know how to apply...
Back
Top