A Solving this first-order differential equation for neutron abundance

AI Thread Summary
The discussion centers on solving a first-order differential equation for neutron abundance, expressed as dX_n/dt = λ - (λ + ȧλ)X_n, where λ is the neutron production rate and ȧλ is the neutron destruction rate. The user has attempted numerical methods like Euler and RK4 but encountered divergence in solutions for X_n. A suggestion is made that the equation may be classified as 'very stiff', recommending the use of the Gear method for more stable solutions. Additional resources, including a link to a relevant research paper, are provided for further assistance. The user expresses gratitude for the help received in addressing the problem.
gurbir_s
Messages
11
Reaction score
4
The time rate of change of neutron abundance ##X_n## is given by
$$\frac{dX_n}{dt} = \lambda - (\lambda + \hat\lambda)X_n$$
where ##\lambda## is neutron production rate per proton and ##\hat\lambda## is neutron destruction rate per neutron.
Given the values of ##\lambda## and ##\hat\lambda## at various values of time, I need to calculate ##X_n##.I have also calculated values of ##\lambda 's## at intermediate times. I have tried using Euler method and RK4 method to solve this equation, but the solutions for ##X_n## diverge to inf values.

[Here][2] is the link to the complete research paper "Primordial Helium Abundance and the Primordial Fireball. II" by P.J.E. Peebles.

Any help or idea on how to solve it will be appreciated : ) [1]: Data for ##\lambda 's## https://i.stack.imgur.com/lnW9M.png
[2]: https://ui.adsabs.harvard.edu/abs/1966ApJ...146..542P/abstract
 
Physics news on Phys.org
hello @gurbir_s ,
:welcome: ##\qquad ## !​

It seems ([edit]: :wink: (*) ) to me you have a differential equation at hand of the so-called 'very stiff' category.
I don't know what tools you have available, but you can try to find an impementation of the Gear method.

(*) the 'primordeal fireball' in the title says it all[edit2]:
A little googling: in https://globaljournals.org/GJSFR_Volume13/2-Numerical-Approach-for-Solving-Stiff.pdf
I find
12. Hindmarsh, A. C. and Gear C.W. (1974), “Ordinary differential equation system solver”, L.L.L. Report UCID -30001, rev. 3, l.l.l. (www.netlib.org/ode/epsode.f)
Good old Fortran !

##\ ##
 
Last edited:
BvU said:
hello @gurbir_s ,
:welcome: ##\qquad ## !​

It seems ([edit]: :wink: (*) ) to me you have a differential equation at hand of the so-called 'very stiff' category.
I don't know what tools you have available, but you can try to find an impementation of the Gear method.

(*) the 'primordeal fireball' in the title says it all[edit2]:
A little googling: in https://globaljournals.org/GJSFR_Volume13/2-Numerical-Approach-for-Solving-Stiff.pdf
I find Good old Fortran !

##\ ##
Thank you : ) @BvU. I was struggling with this problem from quite a few days.
 
comparing a flat solar panel of area 2π r² and a hemisphere of the same area, the hemispherical solar panel would only occupy the area π r² of while the flat panel would occupy an entire 2π r² of land. wouldn't the hemispherical version have the same area of panel exposed to the sun, occupy less land space and can therefore increase the number of panels one land can have fitted? this would increase the power output proportionally as well. when I searched it up I wasn't satisfied with...
Back
Top