MHB Solving Trig Equation: Find the Answer Quickly

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trig
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

Do you think this problem can be approached wisely, rather than expanding it and attack it using the Newton-Raphson method (which I did)?

Problem:

Solve $(\sec^4 x +16)^2=2^{12}(4\tan x+1)$

Thanks for reading and I would appreciate it if in case, you could solve it using shortcut that I failed to acknowledge and share it with me.
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

Do you think this problem can be approached wisely, rather than expanding it and attack it using the Newton-Raphson method (which I did)?

Problem:

Solve $(\sec^4 x +16)^2=2^{12}(4\tan x+1)$

Thanks for reading and I would appreciate it if in case, you could solve it using shortcut that I failed to acknowledge and share it with me.

Well writing $\displaystyle \begin{align*} \sec^2{(x)} = 1 + \tan^2{(x)} \end{align*}$ so that the equation is only in terms of $\displaystyle \begin{align*} \tan{(x)} \end{align*}$ would be a start :)
 
Prove It said:
Well writing $\displaystyle \begin{align*} \sec^2{(x)} = 1 + \tan^2{(x)} \end{align*}$ so that the equation is only in terms of $\displaystyle \begin{align*} \tan{(x)} \end{align*}$ would be a start :)

Thanks, Prove It for your reply. In fact, I solved this problem by using that substitution. I am hoping if you or anyone could find a short cut to approach the problem, since the substitution method led to a more complex polynomial and I at last have to rely wholly on the Newton-Raphson method to find the approximate answers to this problem...(Thinking)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
1K
Replies
11
Views
3K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
3
Views
3K
Back
Top