MHB Solving $y>0$ given $[y]^2=y\times(y)$ and Proving Inequalities

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequalities
AI Thread Summary
The discussion focuses on solving the inequality $y>0$ under the conditions that $[y]^2 = y \times (y)$, where $[y]$ is the integer part and $(y)$ is the decimal part of $y$. It establishes that $y$ can be expressed as $y = [y] + (y)$, leading to the exploration of proving the equation $[y] + [y + \frac{1}{2}] = [2y]$. Additionally, it examines the case where $0 < y < 2^{10}$ to prove a summation involving the integer parts of fractions of $y$. The thread emphasizes the relationships between integer and decimal parts of real numbers in the context of inequalities and their proofs.
Albert1
Messages
1,221
Reaction score
0
(1) Given :$y>0$,let $y=[y]+(y)$

where we define $[y]$ the integer part of $y$

and $(y)$ the decimal part of $y$

here $0≤(y)<1$

if $[y]^2=y\times(y)$

find $y=?$

(2) $y\in R,y=[y]+(y)$

the definition is the same as (1)

prove :$[y]+[y+\dfrac {1}{2}]=[2y]$

(3) if $0<y<2^{10}$

using (2) prove :

$[\dfrac {y}{2^1}+\dfrac {1}{2}]+[\dfrac {y}{2^2}+\dfrac {1}{2}]+[\dfrac {y}{2^3}+\dfrac {1}{2}]+-----+[\dfrac {y}{2^{10}}+\dfrac {1}{2}]=[y]$
 
Last edited:
Mathematics news on Phys.org
Albert said:
(1) Given :$y>0$,let $y=[y]+(y)$

where we define $[y]$ the integer part of $y$

and $(y)$ the decimal part of $y$

here $0≤(y)<1$

if $[y]^2=y\times(y)$

find $y=?$

(2) $y\in R,y=[y]+(y)$

the definition is the same as (1)

prove :$[y]+[y+\dfrac {1}{2}]=[2y]$

(3) if $0<y<2^{10}$

using (2) prove :

$[\dfrac {y}{2^1}+\dfrac {1}{2}]+[\dfrac {y}{2^2}+\dfrac {1}{2}]+[\dfrac {y}{2^3}+\dfrac {1}{2}]+-----+[\dfrac {y}{2^{10}}+\dfrac {1}{2}]=[y]$
hint of (1) and (2)
let $y=[y]+(y)=[y]+t=n+t ,0\leq t<1,\,\,and \,\, n\in N$
from (1)$n^2=(n+t)t$ find $n=?$ and then we get the values of $t\,\, and \,\,y$
(2)$[y]+[y+\dfrac {1}{2}]=[2y]$
we get $2n+[t+\dfrac{1}{2}]=2n+[2t]$
you have to prove $[t+\dfrac{1}{2}]=[2t], 0\leq t<1$
(3) can be easily proved from (2)
y replaced by $\dfrac{y}{2},\dfrac {y}{2^2},-------,\dfrac {y}{2^{10}}$ respectively
 
Last edited:
Albert said:
hint of (1) and (2)
let $y=[y]+(y)=[y]+t=n+t ,0\leq t<1,\,\,and \,\, n\in N$
from (1)$n^2=(n+t)t$ find $n=?$ and then we get the values of $t\,\, and \,\,y$
(2)$[y]+[y+\dfrac {1}{2}]=[2y]$
we get $2n+[t+\dfrac{1}{2}]=2n+[2t]$
you have to prove $[t+\dfrac{1}{2}]=[2t], 0\leq t<1$
(3) can be easily proved from (2)
y replaced by $\dfrac{y}{2},\dfrac {y}{2^2},-------,\dfrac {y}{2^{10}}$ respectively
solution:
(1)$n^2=(n+t)t, n\in N ,and\,\, 0\leq t<1$
we have :$t^2+nt-n^2=0,t=\dfrac {-n\pm \sqrt {n^2+4n^2}}{2}$
$\therefore n=1,t=\dfrac {\sqrt 5 -1}{2},y=1+t=\dfrac {1+\sqrt 5}{2}$
(2) prove $[t+\dfrac {1}{2}]=[2t],0\leq t<1$
(i) $0\leq t<0.5, [t+0.5]=[2t]=0$
(ii)$0.5\leq t<1, [t+0.5]=[2t]=1$
(3) from (2) $[y+\dfrac {1}{2}]=[2y]-[y]$
$y$ replaced by $\dfrac {y}{2},\dfrac {y}{2^2},-----,\dfrac {y}{2^{10}}$
$[\dfrac{y}{2}+\dfrac {1}{2}]=[y]-[\dfrac {y}{2}]----(a)$
$[\dfrac{y}{2^2}+\dfrac {1}{2}]=[\dfrac {y}{2}]-[\dfrac {y}{2^2}]----(b)$
-------
$[\dfrac{y}{2^{10}}+\dfrac {1}{2}]=[\dfrac {y}{2^9}]-[\dfrac {y}{2^{10}}]----(j)$
(a)+(b)+----+(j) we get the proof of (3)
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top