Solving $y>0$ given $[y]^2=y\times(y)$ and Proving Inequalities

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequalities
Click For Summary
SUMMARY

The discussion focuses on solving the inequality $y>0$ under the conditions defined by the integer part $[y]$ and the decimal part $(y)$ of $y$. It establishes that if $[y]^2 = y \times (y)$, then $y$ can be expressed as $y = [y] + (y)$, where $0 \leq (y) < 1$. Additionally, it proves the relationship $[y] + [y + \frac{1}{2}] = [2y]$ and demonstrates that for $0 < y < 2^{10}$, the sum of the floor functions $[\frac{y}{2^1} + \frac{1}{2}] + [\frac{y}{2^2} + \frac{1}{2}] + ... + [\frac{y}{2^{10}} + \frac{1}{2}]$ equals $[y]$.

PREREQUISITES
  • Understanding of floor functions and their properties
  • Basic knowledge of inequalities and real numbers
  • Familiarity with mathematical notation and expressions
  • Concept of integer and decimal parts of a number
NEXT STEPS
  • Study the properties of floor functions in depth
  • Learn about inequalities involving real numbers
  • Explore the implications of the equation $[y] + [y + \frac{1}{2}] = [2y]$
  • Investigate the behavior of sums of floor functions over divisions of integers
USEFUL FOR

Mathematicians, students studying real analysis, and educators looking to deepen their understanding of inequalities and floor functions.

Albert1
Messages
1,221
Reaction score
0
(1) Given :$y>0$,let $y=[y]+(y)$

where we define $[y]$ the integer part of $y$

and $(y)$ the decimal part of $y$

here $0≤(y)<1$

if $[y]^2=y\times(y)$

find $y=?$

(2) $y\in R,y=[y]+(y)$

the definition is the same as (1)

prove :$[y]+[y+\dfrac {1}{2}]=[2y]$

(3) if $0<y<2^{10}$

using (2) prove :

$[\dfrac {y}{2^1}+\dfrac {1}{2}]+[\dfrac {y}{2^2}+\dfrac {1}{2}]+[\dfrac {y}{2^3}+\dfrac {1}{2}]+-----+[\dfrac {y}{2^{10}}+\dfrac {1}{2}]=[y]$
 
Last edited:
Mathematics news on Phys.org
Albert said:
(1) Given :$y>0$,let $y=[y]+(y)$

where we define $[y]$ the integer part of $y$

and $(y)$ the decimal part of $y$

here $0≤(y)<1$

if $[y]^2=y\times(y)$

find $y=?$

(2) $y\in R,y=[y]+(y)$

the definition is the same as (1)

prove :$[y]+[y+\dfrac {1}{2}]=[2y]$

(3) if $0<y<2^{10}$

using (2) prove :

$[\dfrac {y}{2^1}+\dfrac {1}{2}]+[\dfrac {y}{2^2}+\dfrac {1}{2}]+[\dfrac {y}{2^3}+\dfrac {1}{2}]+-----+[\dfrac {y}{2^{10}}+\dfrac {1}{2}]=[y]$
hint of (1) and (2)
let $y=[y]+(y)=[y]+t=n+t ,0\leq t<1,\,\,and \,\, n\in N$
from (1)$n^2=(n+t)t$ find $n=?$ and then we get the values of $t\,\, and \,\,y$
(2)$[y]+[y+\dfrac {1}{2}]=[2y]$
we get $2n+[t+\dfrac{1}{2}]=2n+[2t]$
you have to prove $[t+\dfrac{1}{2}]=[2t], 0\leq t<1$
(3) can be easily proved from (2)
y replaced by $\dfrac{y}{2},\dfrac {y}{2^2},-------,\dfrac {y}{2^{10}}$ respectively
 
Last edited:
Albert said:
hint of (1) and (2)
let $y=[y]+(y)=[y]+t=n+t ,0\leq t<1,\,\,and \,\, n\in N$
from (1)$n^2=(n+t)t$ find $n=?$ and then we get the values of $t\,\, and \,\,y$
(2)$[y]+[y+\dfrac {1}{2}]=[2y]$
we get $2n+[t+\dfrac{1}{2}]=2n+[2t]$
you have to prove $[t+\dfrac{1}{2}]=[2t], 0\leq t<1$
(3) can be easily proved from (2)
y replaced by $\dfrac{y}{2},\dfrac {y}{2^2},-------,\dfrac {y}{2^{10}}$ respectively
solution:
(1)$n^2=(n+t)t, n\in N ,and\,\, 0\leq t<1$
we have :$t^2+nt-n^2=0,t=\dfrac {-n\pm \sqrt {n^2+4n^2}}{2}$
$\therefore n=1,t=\dfrac {\sqrt 5 -1}{2},y=1+t=\dfrac {1+\sqrt 5}{2}$
(2) prove $[t+\dfrac {1}{2}]=[2t],0\leq t<1$
(i) $0\leq t<0.5, [t+0.5]=[2t]=0$
(ii)$0.5\leq t<1, [t+0.5]=[2t]=1$
(3) from (2) $[y+\dfrac {1}{2}]=[2y]-[y]$
$y$ replaced by $\dfrac {y}{2},\dfrac {y}{2^2},-----,\dfrac {y}{2^{10}}$
$[\dfrac{y}{2}+\dfrac {1}{2}]=[y]-[\dfrac {y}{2}]----(a)$
$[\dfrac{y}{2^2}+\dfrac {1}{2}]=[\dfrac {y}{2}]-[\dfrac {y}{2^2}]----(b)$
-------
$[\dfrac{y}{2^{10}}+\dfrac {1}{2}]=[\dfrac {y}{2^9}]-[\dfrac {y}{2^{10}}]----(j)$
(a)+(b)+----+(j) we get the proof of (3)
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
969
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K