MHB Solving z^6=i for arguments between 90 and 180 degrees.

  • Thread starter Thread starter woof123
  • Start date Start date
  • Tags Tags
    Modulus
woof123
Messages
9
Reaction score
0
(powers of complex numb.):Find the solution of the following equation whose argument is strictly between 90​ degrees and ​​ 180​ degrees: z^6=i?

I don't understand why the modulus of i is 1 and the argument of i can be 90∘ plus any multiple of 360
 
Mathematics news on Phys.org
Do you know what "modulus" and "argument" are? The "modulus" of a complex number, z= a+ bi, is defined as |z|= \sqrt{z\cdot\overline{z}}= \sqrt{a^2+ b^2}. If z= i then \overline{z}= -i so that |i|= \sqrt{i\cdot(-i)}= \sqrt{-(i\cdot i)}= \sqrt{-(-1)}= 1. The "argument" of a complex number, z= a+ bi, is defined as arg(z)= arctan\left(\frac{b}{a}\right). Of course, if z= i, then a= 0 and b= 1 so b/a is not defined. But the tangent function, tan(\theta) goes to infinity as \theta goes to \pi/2 so, "by continuity", the argument of i is pi/2 (your 90 degrees).

Geometrically, if we represent the complex number, z= x+ yi, as a point in the plane, (x, y), then the "modulus" of z is the distance from (x, y) to the origin (0, 0) (just as |x|, with x a real number is the distance on the real-line from x to 0) which is, of course, \sqrt{x^2+ y^2}. And the argument is the angle that line makes with the positive x-axis. Since the "imaginary axis" (y axis) is perpendicular to the "real axis" (x axis) that angle is 90 degrees.
 
woof123 said:
(powers of complex numb.):Find the solution of the following equation whose argument is strictly between 90​ degrees and ​​ 180​ degrees: z^6=i?

I don't understand why the modulus of i is 1 and the argument of i can be 90∘ plus any multiple of 360

Draw an Argand Diagram. Mark in "i" which is the co-ordinate (0, 1). How far away is it from the origin? This is the modulus...

Can you see it makes a 90 degree angle with the positive real axis? Can you see that if you kept traveling around the circle (so added multiples of 360 degrees) you would get back to the same point?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top