Dear All,(adsbygoogle = window.adsbygoogle || []).push({});

I have learned the Uniqueness and Existence theorem in last lecture, however, the instructor told us that the proof is omitted because it is beyond scope of the course.

I am more concerned with the derivation of the Uniqueness theorem now.

I need some clarification here.

* As far as I understood, if f(x,y) satisfies the lipschitz condition, then the uniqueness theorem is valid. If fy is continuous on the rectangle, then there is unique solution to the equation; because continuity of partial y implies lipschitz condition to be valid.

Moreover, in order to find a solution, instead of a diff. eq. we could write an integral equation and define an operator. (I'm not sure I know what an operator is, though. ) It turns out that we have an operator such as F(y) = y and F(y) - y = 0 => g(y) = F(y) - y and the values of y which make g(y) = 0 is also a solution to the diff eq.

I have learned that this is called a fixed point and could be found by fixed point iteration (picard iteration).

For this, I learned that we could write F(yn) = yn + 1 . This part is totally unclear to me; because I don't see why F(yn) = yn+1. We know that F(yn) = yn and saying F(yn) = yn+1 means we are making an error, aren't we ? I tend to think that this error is so small that we are neglecting it, but why is it so ?

My priority now is to understand the part above.

Moreover, I also wonder how do we know that those fixed points are in fact unique ?

Regarding to uniqueness of fixed points, I don't need the proof in a fully mathematically described in cooperation with other theorems, because I have just started learning differential equations. I have been searching and found some theorems such as Banach's but was unable to understand those. I have some knowledge of calculus; and what I need is a sketch of the proof.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Some clarification needed about basic concepts

**Physics Forums | Science Articles, Homework Help, Discussion**