Some questions about the existence of the optimal approximation

Click For Summary

Discussion Overview

The discussion revolves around the existence of the optimal approximation in the context of Euclidean spaces and their subspaces. Participants explore the conditions under which an optimal approximation can be uniquely represented as a linear combination of basis vectors in a subspace, as well as the implications of the term "class" in relation to a system of linear equations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants assert that for an optimal approximation to exist, it must be expressible uniquely as a linear combination of basis vectors.
  • Others question the meaning of the term "class" in the context of a system of linear equations, suggesting it could refer to either the number of equations or the number of variables.
  • A participant proposes that the term "class" may relate to the rank of the coefficient matrix in the system, indicating a unique solution.
  • One participant explains that the basis set being linearly independent is crucial for the system to have a unique solution, linking this to the concept of class.
  • Another participant elaborates on the implications of linear dependence and independence in relation to the rank of the matrix formed by the basis vectors.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the term "class" and its implications, with no consensus reached on its definition. There is agreement on the necessity of unique representation for the optimal approximation, but the discussion remains unresolved regarding the specifics of the term "class" and its relevance.

Contextual Notes

The discussion highlights the ambiguity surrounding the term "class" in linear algebra contexts and the implications of linear independence for the existence of unique solutions in approximation problems.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following that is related to the existence of the optimal approximation.

$H$ is an euclidean space
$\widetilde{H}$ is a subspace of $H$

We suppose that $dim \widetilde{H}=n$ and $\{x_1,x_2,...,x_n\}$ is the basis of $\widetilde{H}$.

Let $y \in \widetilde{H}$ be the optimal approximation of $x \in H$ from $\widetilde{H}$.
Then $(y,u)=(x,u), \forall u \in \widetilde{H}$.

We take $u=x_i \in \widetilde{H}$, so $(y,x_i)=(x,x_i)$

Since $\{x_1,x_2,...,x_n\}$ is the basis of $\widetilde{H}$, $y$ can be written as followed:
$y=a_1 x_1 + a_2 x_2 +... + a_n x_n$

$\left.\begin{matrix}
(x,x_1)=(y,x_1)=a_1 (x_1,x_1)+a_2 (x_2,x_1)+...+a_n (x_n,x_1)\\
(x,x_2)=(y,x_2)=a_1 (x_1,x_2)+a_2 (x_2,x_2)+...+a_n (x_n,x_2)\\
...\\
(x,x_n)=(y,x_n)=a_1 (x_1,x_n)+a_2 (x_2,x_n)+...+a_n (x_n,x_n)
\end{matrix}\right\}(1)$

So that the optimal approximation exists, I have to be able to write $y$ in an unique way as linear combination of the elements of the basis.

The system $(1)$ has class $n$, since the $\{x_1, ..., x_n \}$ consist the basis of $\widetilde{H}$.
So the system has a unique solution.>Why does the optimal approximation only exists when $y$ can be written in an unique way as linear combination of the elements of the basis?

>What does it mean that the system $(1)$ has class $n$? That it has $n$ equations and $n$ unknown variabes?
 
Physics news on Phys.org
Hey! (Blush)

>Why does the optimal approximation only exists when $y$ can be written in an unique way as linear combination of the elements of the basis?

In a linear (sub)space every vector can be written as a unique linear combination of basis vectors.
So if $y$ can be written as 2 different linear combinations, those are really different vectors. In other words: $y$ is not a unique vector, so you cannot call it "the" optimal approximation.
>What does it mean that the system $(1)$ has class $n$? That it has $n$ equations and $n$ unknown variabes?

I'm not aware of a concept named class as related to a system of linear equations. Googling for it gave indeed no hits. As I see it, it is ambiguous in this context. It can either mean $n$ equations or $n$ variables. Luckily, in this particular case it is both. :)
 
mathmari said:
>What does it mean that the system $(1)$ has class $n$? That it has $n$ equations and $n$ unknown variabes?
I have not come across the term "class" in that context. My guess is that what it means is that the matrix of coefficients in the system (1) has rank $n$. That implies that the equations have a unique solution, which is what is wanted here.
 
I like Serena said:
In a linear (sub)space every vector can be written as a unique linear combination of basis vectors.
So if $y$ can be written as 2 different linear combinations, those are really different vectors. In other words: $y$ is not a unique vector, so you cannot call it "the" optimal approximation.

A ok! So if $y$ can be written as 2 different linear combinations, that means that there are 2 different approximations, so we do not have the one that is optimal.
I got it!
I like Serena said:
I'm not aware of a concept named class as related to a system of linear equations. Googling for it gave indeed no hits. As I see it, it is ambiguous in this context. It can either mean $n$ equations or $n$ variables. Luckily, in this particular case it is both. :)

Opalg said:
I have not come across the term "class" in that context. My guess is that what it means is that the matrix of coefficients in the system (1) has rank $n$. That implies that the equations have a unique solution, which is what is wanted here.

Aha! Ok!

The system $(1)$ has class $n$, since the $\{x_1, ..., x_n \}$ consist the basis of $\widetilde{H}$.
Why do we conclude to that the class of the system is $n$ from the fact that the $\{x_1, ..., x_n \}$ consist the basis of $\widetilde{H}$?
 
mathmari said:
Why do we conclude to that the class of the system is $n$ from the fact that the $\{x_1, ..., x_n \}$ consist the basis of $\widetilde{H}$?
Good question! We know that $\dim\widetilde H = n$, so the condition for the set $\{x_1, ..., x_n \}$ to be a basis is that it should be linearly independent. Or, to put it negatively, the set will fail to be a basis if and only if it is linearly dependent. That in turn is equivalent to the condition that there should exist scalars $\lambda_1,\ldots,\lambda_n$, not all $0$, such that $\sum \lambda_ix_i = 0.$ But then $\sum \lambda_i\langle x_i,x_j \rangle = 0$ for all $j$. That says that the rows of the matrix $A = (\langle x_i,x_j \rangle)$ are linearly dependent, which means that the rank of $A$ is less than $n$.

Conversely, if the rank of $A$ is less than $n$, then its rows are linearly dependent. So there exist scalars $\lambda_1,\ldots,\lambda_n$, not all $0$, such that $\sum \lambda_i\langle x_i,x_j \rangle = 0$ for all $j$. This says that $\sum \lambda_ix_i$ is orthogonal to each $x_j$. Since the $x_j$ form a basis, it follows that $\sum \lambda_ix_i = 0$ and so $\{x_1, ..., x_n \}$ is not a basis for $\widetilde H$.
 
Last edited:

Similar threads

  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
22
Views
4K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 21 ·
Replies
21
Views
3K