Space-time interval Lorentz co/invariant

Click For Summary
SUMMARY

The discussion revolves around demonstrating that the space-time interval, defined as ##\Delta s^2=-c^2\Delta t^2+\Delta x^2+\Delta y^2+\Delta z^2##, is invariant under Lorentz transformations. The participant initially struggled with the algebraic manipulations required to show that ##\Delta s'^2=\Delta s^2## using the Lorentz transformations ##\Delta t' = \gamma \left ( \Delta t -\frac{\vec v \cdot \Delta \vec x}{c^2} \right )## and ##\vec \Delta x'=\gamma (\Delta \vec x - \vec v t)##. After several iterations and corrections, they successfully simplified their expressions to reach the invariant result, confirming the consistency of the Lorentz transformation with the principles of special relativity.

PREREQUISITES
  • Understanding of Lorentz transformations and their mathematical formulation.
  • Familiarity with the concepts of space-time intervals in special relativity.
  • Proficiency in algebraic manipulation and simplification of equations.
  • Knowledge of the gamma factor, ##\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}##.
NEXT STEPS
  • Study the derivation of Lorentz transformations in detail.
  • Explore the implications of space-time intervals in different inertial frames.
  • Learn about the gamma factor and its significance in relativistic physics.
  • Investigate the geometric interpretation of Lorentz transformations in Minkowski space.
USEFUL FOR

Students and educators in physics, particularly those focusing on special relativity, as well as researchers and professionals who require a solid understanding of Lorentz invariance and its applications in theoretical physics.

fluidistic
Gold Member
Messages
3,932
Reaction score
283

Homework Statement


Hi guys!
I must show by brute force that ##\Delta s^2=-c^2\Delta t^2+\Delta x^2+\Delta y^2+\Delta z^2## is invariant under Lorentz transforms.


Homework Equations


Lorentz transforms:
##\Delta t' = \gamma \left ( \Delta t -\frac{\vec v \cdot \Delta \vec x}{c^2} \right )## and ##\vec \Delta x'=\gamma (\Delta \vec x - \vec v t)##.
I will use the convention ##\Delta \vec x= (\Delta x, \Delta y , \Delta z )## and ##\vec v = (v_x ,v_y, v_z)##

The Attempt at a Solution


Basically I must show that ##\Delta s'^2=\Delta s^2##. Where ##\Delta s'^2=-c^2\Delta t'^2+\Delta x'^2+\Delta y'^2+ \Delta z'^2##.
I have that ##\Delta x'^2+\Delta y' ^2+\Delta z'^2=\gamma ^2[\Delta x^2+\Delta y^2+\Delta z^2 +\Delta t^2 \underbrace{(v_x^2+v_y^2+v_z^2)}_{=\vec v^2}-2\Delta t (\Delta x v_x+\Delta yv_y +\Delta z v_z)]##
While ##\Delta t'^2=\gamma ^2 \{ \Delta t^2-\frac{2\Delta t}{c^2}(v_x\Delta x+v_y\Delta y +v_z \Delta z)+\frac{1}{c^4}[v_x^2 \Delta x^2+v_y^2\Delta y^2+v_z^2 \Delta z^2+2(v_x\Delta xv_y\Delta y+ v_y\Delta y v_z\Delta z+v_x\Delta x v_z\Delta z)] \}##.
So then I performed ##\Delta s'^2## and after all the simplifications I could do, I reached that ##\Delta s'^2=\gamma ^2 \left [ \Delta t^2 (\vec v^2-c^2) -\frac{\vec v \cdot \vec x}{c^2} +\Delta \vec x +\frac{2}{c^2} (v_x\Delta xv_y\Delta y+ v_y\Delta y v_z\Delta z+v_x\Delta x v_z\Delta z) \right ]## which does not seem equal to ##\Delta s##. I've redone the algebra 4 times (lost hours on this), I reach the same answer every time. So either the expression I found is right but I must simplify it even more and it indeed equals ##\Delta s##, or I'm wrong somewhere.
I'd appreciate some help... thank you!
 
Physics news on Phys.org
fluidistic said:
##\Delta t' = \gamma \left ( \Delta t -\frac{\vec v \cdot \Delta \vec x}{c^2} \right )## and ##\vec \Delta x'=\gamma (\Delta \vec x - \vec v t)##.

For a boost in an arbitrary direction, I think your expression for ##\Delta t'## is ok. But the correct expression for ##\vec \Delta x'## is more complex than what you wrote. See for example

http://en.wikipedia.org/wiki/Lorentz_transformation#Boost_in_any_direction

Are you sure you can't orient your axes so that the x-axis is parallel to the boost?
 
  • Like
Likes   Reactions: 1 person
TSny said:
For a boost in an arbitrary direction, I think your expression for ##\Delta t'## is ok. But the correct expression for ##\vec \Delta x'## is more complex than what you wrote. See for example

http://en.wikipedia.org/wiki/Lorentz_transformation#Boost_in_any_direction

Are you sure you can't orient your axes so that the x-axis is parallel to the boost?

I see, thank you very much.
Due to the complexity of the expression for a boost in any direction, I guess I can orient the axes so that it results to be in the x-direction. I will consider this case only. :biggrin:
 
At first glance I get ##\Delta s'^2=\Delta t^2 (-c^2\gamma^2+v^2)+\gamma ^2 \left ( \Delta x^2+v^2 \Delta t^2 - \frac{v^2\Delta x^2}{c^2} \right )##.
I guess I'll have to redo the math.
Edit:Yeah I forgot 2 terms. I reach now ##\Delta s'^2=\Delta t^2[v^2+\gamma(v^2-c^2)]+\Delta x^2+\Delta y^2+\Delta z^2##. Almost the desired result but apperently I still have some job to do :)

Edit 2:This reduces to ##\Delta s'^2=\Delta t^2 (v^2-c^2)+\Delta \vec x##. I'm almost there. But I would reach the result only if v=0... which is not correct.
 
Last edited:
Everything multiplying ##\Delta t^2## should be proportional to ##\gamma^2##, so your expression in your first edit looks kinda odd.
 
fluidistic said:
I reach now ##\Delta s'^2=\Delta t^2[v^2+\gamma(v^2-c^2)]+\Delta x^2+\Delta y^2+\Delta z^2##. Almost the desired result but apperently I still have some job to do :)

Trace back to see how you got the first term of ##v^2## in the first brackets. I don't think that should be there.
 
TSny said:
Trace back to see how you got the first term of ##v^2## in the first brackets. I don't think that should be there.

I've tracked it down (already on my own), at ##\Delta x'=\gamma (\Delta x - v \Delta t)##. When I must take the square of this quantity, there's a term ##\gamma ^2 v^2\Delta t^2##. I couldn't cancel this term out though I must re-recheck the algebra.Edit: Nevermind, I made a mistake. I now reach the desired result! Thank you guys.
 
Last edited:

Similar threads

Replies
19
Views
3K
Replies
7
Views
3K
Replies
0
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
2K