B Spaghettification & Black Holes: Classical & Einsteinian

DaveC426913
Gold Member
Messages
23,830
Reaction score
7,815
TL;DR Summary
What is the source of the lateral "squashing" when falling into a black hole?
(Classical model)
The radial "stretching" is caused by differential gravity (tides), but what is the lateral squashing caused by? Is it because the "force" of gravity is not parallel, but instead comes from a point, forming an acute angle?

(Einsteinian model)
I guess it's pretty trivial to explain in curved spacetime - the curvature near a black hole can be measured both radially and circumferentially, yes? (That's just a little less intuitive.) And they curve in opposite "directions", so opposing "forces".
 
Physics news on Phys.org
DaveC426913 said:
The radial "stretching" is caused by differential gravity (tides), but what is the lateral squashing caused by?
Tides. For example, if you look at the tides on Earth caused by the Moon, there is stretching radially but squashing laterally. Low tide is not just the ocean being at the "normal" level it would be at without the Moon there; it's the ocean being squashed by lateral tidal effects. (Of course this is all at a very heuristic level, there are lots of complications to actual tides in the Earth's oceans, but in an idealized model the effects would be what I've described.)

Note, btw, that the basic effect is the same in both Newtonian gravity and relativity. The underlying conceptual basis is very different, of course, but the actual effect is basically the same.

DaveC426913 said:
the curvature near a black hole can be measured both radially and circumferentially, yes?
Yes. In units where ##G = c = 1##, the radial tidal stretching at radial coordinate ##r## in Schwarzschild spacetime goes like ##2M / r^3##, and the lateral squashing goes like ##M / r^3##. In more technical terms, these are the relevant components of the Riemann curvature tensor in an orthonormal basis.
 
  • Like
Likes vanhees71 and topsquark
PeterDonis said:
the ocean being squashed by lateral tidal effects.
But is it because the Moon is effectively a point?

OK, I see. Even as I try to describe the counter-example - a laterally-uniform gravitational source - I realize I'm describing a massive body that is far away, meaning its influence is effectively parallel. Which is tides.
 
DaveC426913 said:
is it because the Moon is effectively a point?
As far as tides on Earth are concerned, yes, the Moon can be considered a point mass. There are small theoretical corrections due to its finite size, but I think they're too small to be measurable.

DaveC426913 said:
a laterally-uniform gravitational source - I realize I'm describing a massive body that is far away, meaning its influence is effectively parallel. Which is tides.
I'm not sure what you mean here. Tides are not the same as the "acceleration due to gravity" vector. In the Newtonian approximation you can think of them as being due to spatial differences in the magnitude and direction of that vector. (In GR that's not quite correct, but it's still a reasonable approximation for cases like the Earth and the Moon.)

A "laterally uniform" source would be one in which the magnitude and direction of the vector does not change laterally. In such a case there would be no lateral tides. If you are very far away from a spherically symmetric mass (much farther than the Earth is from the Moon), the lateral change in the vector can become too small to measure--in which case the lateral tides would also become too small to measure. But in that limit, the radial tides would also become too small to measure, because both tides are of the same order of magnitude (look at the numbers I gave previously for Schwarzschild spacetime, for example). In other words, the radial change in the vector would also be too small to measure.
 
PeterDonis said:
A "laterally uniform" source would be one in which the magnitude and direction of the vector does not change laterally. In such a case there would be no lateral tides. If you are very far away from a spherically symmetric mass (much farther than the Earth is from the Moon), the lateral change in the vector can become too small to measure--in which case the lateral tides would also become too small to measure.
Yes, this is exactly what I mean.
PeterDonis said:
But in that limit, the radial tides would also become too small to measure, because both tides are of the same order of magnitude (look at the numbers I gave previously for Schwarzschild spacetime, for example). In other words, the radial change in the vector would also be too small to measure.
Yes, exactly. That's the point where I realized they were one-and-the-same. Radial tides and lateral tides go hand-in-hand. I could visualize it but I didn't have the vocabulary to express it.

Thanks!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top