- 392
- 13
If averaging of a function over a volume is defined as ##\frac{\int_v f(x,y,z,t) dv}{\int_v dv}##.
Now if the average ##f^2(x,y,z,t)## is given 0 over a volume,then ##f(x,y,z,t)## has to be necessarily 0 in the volume domain??
Now if the average ##f^2(x,y,z,t)## is given 0 over a volume,then ##f(x,y,z,t)## has to be necessarily 0 in the volume domain??