1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Spherical Capacitor with Frequency Dependent Dielectric

  1. Dec 5, 2014 #1
    This is a long post. Sorry...

    1. The problem statement, all variables and given/known data


    We are given a spherical capacitor with an inner conductor of radius ##a## and outer conductor of radius ##c##. The space between the conductors is half filled (##a<r<b##) with a dielectric with permittivity ##\varepsilon\left(\omega\right)## and vacuum in the region ##b<r<c##. The potential difference between the conductors is ##V\left(t \right) = \phi\left(c,t \right) - \phi\left(a,t \right) = V_{0}\cos\left(\omega t\right)##. Find the electric field and the electric flux density in the regions ##a<r<b## and ##b<r<c##. Also find the free and induced surface charge density residing on the surfaces ##r=a##, ##r=b##, and ##r=c##.

    2. Relevant equations

    This is a spherically symmetric problem, so the electric field and electric flux density will be functions of ##r## only. Since there is no free charge inside the sphere,
    $$\nabla^2 \phi\left(r,t\right) = 0$$ Also,
    1. ##\mathbf{E}\left(r,t\right) = E_{r}\left(r,t\right) = -\nabla \phi##
    2. ##\mathbf{D}\left(r,t\right) = D_{r}\left(r,t\right) = \varepsilon(r,\omega)\mathbf{E}\left(r,t\right)##
    The boundary conditions are:
    1. Denoting the regions as 1 (##a<r<b##) and 2 (##b<r<c##), $$\phi_{2}\left(c,t\right) - \phi_{1}\left(a,t\right) = V_{0}\cos\left(\omega t\right)$$
    2. At ##r=b##, $$\mathbf{D}_{1} = \mathbf{D}_2 \Longrightarrow \varepsilon\left(\omega\right)\nabla \phi_{1}\left(b,t\right) = \varepsilon_{0}\nabla \phi_{2}\left(b,t\right)$$ and $$\phi_{1}\left(b,t\right) = \phi_{2}\left(b,t\right)$$

    3. The attempt at a solution
    1. At ##r=b##, the induced surface charge density of the dielectric is: $$\sigma_{P}\left(r=b\right) = \hat{r} \cdot \left(\mathbf{P}_1 - \mathbf{P}_2\right) = \hat{r} \cdot \mathbf{P}_1 = \hat{r} \cdot \varepsilon_{0}\chi_{1}\left(\omega\right)\mathbf{E}_1\left(b,t\right) = \left(\varepsilon\left(\omega\right) - \varepsilon_0\right)E_{r}\left(b,t\right)$$
    2. At ##r=a##, the free surface charge density is: $$ \sigma_{f}\left(a\right) = \hat{r}\cdot \mathbf{D}_{1}\left(a,t\right) = \varepsilon\left(\omega\right)E_{r}\left(a,t\right)$$
    The solution to ##\nabla^2 \phi\left(r,t\right) = 0## is the Legendre polynomials, and for a sphere: $$\phi\left(r,t\right) = \begin{cases} \dfrac{-A_1}{r} + B_1 & a<r<b\\ \dfrac{-A_1}{r} + B_1 & b<r<c \end{cases}$$ Hence, in region (1), $$ E_{r,1}\left(r,t\right) = -\nabla \phi_{1} = -\dfrac{A_1}{r^2}$$ and $$D_{r,1}\left(r,t\right) = \varepsilon\left(\omega\right)E_{r,1} = -\varepsilon\left(\omega\right)\dfrac{A_1}{r^2}$$ In region (2), $$E_{r,2}\left(r,t\right) = -\dfrac{A_2}{r^2}$$ and $$D_{r,2}\left(r,t\right) = -\varepsilon_{0}\dfrac{A_2}{r^2}$$ Using boundary conditions: numer (2) yields $$-\varepsilon\left(\omega\right)\dfrac{A_1}{b^2} = -\varepsilon_{0}\dfrac{A_2}{b^2} \Longrightarrow A_{2} = \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}}A_1$$ and $$\dfrac{-A_1}{b} + B_1 = \dfrac{-A_2}{b} + B_2\\\dfrac{-A_1}{b} + B_1= \dfrac{-1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}}A_1\right)+ B_2\\ \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right) = B_2 - B_1 $$ Using B.C. number (1) yields: $$V_0 \cos\left(\omega t\right) = \dfrac{-A_2}{c} + B_2 + \dfrac{A_1}{a} - B_1 = -\dfrac{1}{c}\left(\dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}}A_1\right) + \dfrac{A_1}{a} + \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right)\\ V_{0}\cos\left(\omega t\right) = \left[\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0}\left(\dfrac{1}{b} - \dfrac{1}{c}\right) + \left(\dfrac{1}{a} - \dfrac{1}{b}\right)\right]A_1 = K_1 A_1$$
    Hence $$A_1 = \dfrac{V_0}{K_1}\cos\left(\omega t\right)$$ $$ A_2 = \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} \dfrac{V_0}{K_1}\cos\left(\omega t\right) = \left[\dfrac{1}{b} - \dfrac{1}{c} + \dfrac{\varepsilon_0}{\varepsilon\left(\omega\right)}\left(\dfrac{1}{b} - \dfrac{1}{a}\right)\right]^{-1} V_0 \cos\left(\omega t\right) = \dfrac{V_0}{K_2}\cos\left(\omega t\right)$$
    Since we need the difference $$B_2 - B_1 = \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right)$$ we can choose ##B_1 = 0## and then $$B_2 = \dfrac{A_1}{b}\left( \dfrac{\epsilon\left(\omega\right)}{\varepsilon_{0}} - 1\right) = \left(\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0} - 1\right)\dfrac{V_0}{b K1}\cos\left(\omega t\right)$$
    Finally, $$\phi_{1}\left(r,t\right) = -\dfrac{V_0}{K_1 r}\cos\left(\omega t\right) = \dfrac{abc\varepsilon_0}{\varepsilon\left(\omega\right)\left(ab-ac\right) + \varepsilon_{0}\left(bc-ac\right)}\dfrac{V_0}{r}\cos\left(\omega t\right)$$
    and, $$\phi_{2}\left(r,t\right) = -\dfrac{V_0}{K_2}\cos\left(\omega t\right) + \left(\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0} - 1\right)\dfrac{V_0}{b K1}\cos\left(\omega t\right) \\ \phi_{2}\left(r,t\right) = \dfrac{ac\left(r\left(\epsilon\left(\omega\right) - \varepsilon_0\right) - b\varepsilon\left(\omega\right)\right)}{\varepsilon_0\left(a c - b c\right) + \varepsilon\left(\omega\right)\left(a c - a b\right)}\dfrac{V_0}{r}\cos\left(\omega t \right)$$

    Using these results,
    $$\begin{align*}

    E_{r}\left(r,t\right) &= \begin{cases}

    -\dfrac{V_0}{K r^2}\cos\left(\omega t\right) & a<r<b\\

    \mbox{}\\

    -\dfrac{\varepsilon\left(\omega\right)}{\varepsilon_0}\dfrac{V_0}{Kr^2}\cos\left(\omega t\right), & b<r<c

    \end{cases}\\

    D_{r}\left(r,t\right) &= \begin{cases}

    -\varepsilon\left(\omega\right)\dfrac{V_0}{K r^2}\cos\left(\omega t\right) & a<r<b\\

    \mbox{}\\

    -\varepsilon\left(\omega\right)\dfrac{V_0}{Kr^2}\cos\left(\omega t\right), & b<r<c

    \end{cases}

    \end{align*}$$

    Then using the equations for free and induced surface charge density,

    $$\begin{align*}

    \sigma_f\left(a\right) &= -\varepsilon\left(\omega\right)\dfrac{V_0}{K a^2}\cos\left(\omega t\right)\\

    \sigma_P\left(b\right) &= \left(\varepsilon_0 - \varepsilon\left(\omega\right)\right)\dfrac{V_0}{K b^2}\cos\left(\omega t\right)

    \end{align*}$$

    The surface charge density at ##r=c## will be equal and opposite that at ##r=a##.


    Using these quantities to calculate the capacitance yields:

    $$\begin{align*}

    C = \dfrac{Q}{\Delta V} = \dfrac{\sigma_f A_S}{V_0 \cos\left(\omega t\right)} = \dfrac{4\pi abc \varepsilon\left(\omega\right)\varepsilon_0}{\varepsilon_{0}\left(bc -ac\right) + \varepsilon\left(\omega\right)\left(ab-ac\right)}

    \end{align*}$$

    My professor gave an instruction at the end of the problem saying: "To simplify notation you may introduce as an intermediate quantity the charge on the outer sphere provided you eventually give an expression for it in terms of the voltage." I don't know if I am making some wrong assumptions or why I would need this intermediate term as I already found the surface charge densities. Any suggestions?
     
  2. jcsd
  3. Dec 5, 2014 #2

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    That approach looks longer than I would expect.
    I would follow the hint of the professor, as such a charge variable allows to calculate all variables step by step instead of getting huge systems of equations. You do not need it, but it makes the solution easier.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Spherical Capacitor with Frequency Dependent Dielectric
Loading...