MHB Spherical coordinates - Orthonormal system

Click For Summary
The discussion focuses on the use of spherical coordinates and the orthonormal system of vectors $\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\theta}, \overrightarrow{e}_{\phi}$. Participants explore how to express these vectors in terms of the Cartesian unit vectors $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and the coordinates $(x, y, z)$. They discuss methods for calculating the cross products $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ and $\overrightarrow{e}_{\phi} \times \overrightarrow{j}$ both analytically and geometrically. The conversation also touches on the notation of vectors, specifically the distinction between the scalar radius $r$ and the vector $\overrightarrow{\rho}$. Overall, the thread emphasizes understanding the relationships and transformations between spherical and Cartesian coordinates.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Using spherical coordinates and the orthonormal system of vectors $\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\theta}, \overrightarrow{e}_{\phi}$
  1. describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ and $\overrightarrow{e}_{\phi} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Using spherical coordinates and the orthonormal system of vectors $\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\theta}, \overrightarrow{e}_{\phi}$
  1. describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ and $\overrightarrow{e}_{\phi} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)

Hey mathmari! :D

Easiest is to do it geometrically by drawing a vector in spherical coordinates, and deducing in which direction the vector changes if you change one of the spherical coordinates. (Thinking)

In this picture you can see how they should come out:
View attachment 4097

Or analytically by evaluating:
$$\overrightarrow{e}_{\rho} = \frac{\d {\overrightarrow r}{\rho}}{\lVert\d {\overrightarrow r}{\rho}\rVert}$$
 

Attachments

  • image004.gif
    image004.gif
    3.1 KB · Views: 136
I like Serena said:
Or analytically by evaluating:
$$\overrightarrow{e}_{\rho} = \frac{\d {\overrightarrow r}{\rho}}{\lVert\d {\overrightarrow r}{\rho}\rVert}$$

Is it as followed?? (Wondering)

$r=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$

$x=\rho \sin \phi \cos \theta , y=\rho \sin \phi \sin \theta , z=\rho \cos \phi$

$$\overrightarrow{e}_{\rho} = \frac{\d {\overrightarrow r}{\rho}}{\lVert\d {\overrightarrow r}{\rho}\rVert}=\frac{\sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k}}{\lVert \sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k} \rVert}=\sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k} \\

\overrightarrow{e}_{\theta} = \frac{\d {\overrightarrow r}{\theta}}{\lVert\d {\overrightarrow r}{\theta}\rVert}=\frac{-\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j}}{\lVert -\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j} \rVert}=\frac{-\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j}}{\sqrt{\rho^2 \sin^2 \phi}}=\frac{-\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j}}{\rho \sin \phi}=- \sin \theta \overrightarrow{i}+ \cos \theta \overrightarrow{j}\\

\overrightarrow{e}_{\phi} = \frac{\d {\overrightarrow r}{\phi}}{\lVert\d {\overrightarrow r}{\phi}\rVert}=\frac{\rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k}}{\lVert \rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k} \rVert}=\frac{\rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k}}{\sqrt{\rho^2}}=\frac{\rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k}}{\rho}=\cos \phi \cos \theta \overrightarrow{i}+\cos \phi \sin \theta \overrightarrow{j}-\sin \phi \overrightarrow{k}$$
 
Yep! (Nod)
 
So, to describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ do we have to do the following?? (Wondering)

$r=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$

$x=\rho \sin \phi \cos \theta , y=\rho \sin \phi \sin \theta , z=\rho \cos \phi$

$\rho=\sqrt{x^2+y^2+z^2}$

$x^2+y^2=\rho^2 \sin^2 \phi \cos^2 \theta+\rho^2 \sin^2 \phi \sin^2 \theta=\rho^2 \sin^2 \phi \Rightarrow \rho \sin \phi = \sqrt{x^2+y^2}$

$\rho^2 \sin^2 \phi=x^2+y^2 \Rightarrow \rho \sin^2 \phi=\frac{x^2+y^2}{\rho} \Rightarrow \rho \sin^2 \phi=\frac{x^2+y^2}{\sqrt{x^2+y^2+z^2}}$

$z=\rho \cos \phi \Rightarrow \cos \phi=\frac{z}{\rho}=\cos \phi=\frac{z}{\sqrt{x^2+y^2+z^2}}$

$$\overrightarrow{e}_{\rho} =\sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k} =\frac{1}{\rho} \left ( \rho \sin \phi \cos \theta \overrightarrow{i}+\rho \sin \phi \sin \theta \overrightarrow{j}+\rho \cos \phi \overrightarrow{k}\right )=\frac{1}{\sqrt{x^2+y^2+z^2}} \left ( x \overrightarrow{i}+y \overrightarrow{j}+z \overrightarrow{k}\right )\\

\overrightarrow{e}_{\theta} =- \sin \theta \overrightarrow{i}+ \cos \theta \overrightarrow{j}=\frac{1}{\rho} \left (- \rho \sin \theta \overrightarrow{i}+ \rho \cos \theta \overrightarrow{j}\right )=\frac{1}{\rho \sin \phi} \left (- \rho \sin \phi \sin \theta \overrightarrow{i}+ \rho \sin \phi \cos \theta \overrightarrow{j}\right )=\frac{1}{\sqrt{x^2+y^2}} \left (- y \overrightarrow{i}+ x \overrightarrow{j}\right )\\

\overrightarrow{e}_{\phi} =\cos \phi \cos \theta \overrightarrow{i}+\cos \phi \sin \theta \overrightarrow{j}-\sin \phi \overrightarrow{k}=\frac{1}{\rho \sin \phi }\left (\cos \phi \rho \sin \phi \cos \theta \overrightarrow{i}+\cos \phi \rho \sin\phi \sin \theta \overrightarrow{j}-\rho \sin^2 \phi \overrightarrow{k}\right )=\frac{1}{\sqrt{x^2+y^2}}\left (\frac{z}{\sqrt{x^2+y^2+z^2}}x \overrightarrow{i}+\frac{z}{\sqrt{x^2+y^2+z^2}}y \overrightarrow{j}-\frac{x^2+y^2}{\sqrt{x^2+y^2+z^2}} \overrightarrow{k}\right )$$
 
mathmari said:
So, to describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ do we have to do the following?? (Wondering)

That looks to be correct. (Nod)

Btw, you can basically read off the end result directly from the geometrical representation of spherical coordinates. (Nerd)
$r=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$

Shouldn't that be $\overrightarrow{\rho}$ instead of $r$? (Wondering)
 
I like Serena said:
Shouldn't that be $\overrightarrow{\rho}$ instead of $r$? (Wondering)

Why? (Wondering)
 
mathmari said:
Why? (Wondering)

Well... $r$ is defined to be a vector.
Shouldn't it have an arrow over it then? (Wondering)

Furthermore, we have $\overrightarrow r = \rho \overrightarrow e_\rho$.
It's not required, but isn't it kind of conventional to use the same symbol for the length of a vector as for the vector itself? (Wondering)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K