Spherical coordinates - Orthonormal system

Click For Summary

Discussion Overview

The discussion revolves around the representation of spherical coordinates and the orthonormal system of vectors $\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\theta}, \overrightarrow{e}_{\phi}$. Participants explore how to express these vectors in terms of Cartesian coordinates $(x, y, z)$ and the unit vectors $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$. They also discuss methods for calculating vector cross products involving $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants suggest using geometric methods to visualize the changes in vectors as spherical coordinates vary.
  • Others propose an analytical approach to derive the expressions for $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$, and $\overrightarrow{e}_{\phi}$ based on derivatives of the position vector $\overrightarrow{r}$.
  • One participant provides detailed calculations for $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$, and $\overrightarrow{e}_{\phi}$, expressing them in terms of Cartesian coordinates.
  • There is a discussion about the notation used for the position vector, with some questioning whether it should be denoted as $\overrightarrow{\rho}$ instead of $r$.
  • Participants also discuss the convention of using the same symbol for the length of a vector and the vector itself, raising questions about clarity in notation.

Areas of Agreement / Disagreement

Participants express differing views on the appropriate notation for the position vector and the conventions surrounding it. While some agree on the correctness of the derived expressions for the spherical coordinate vectors, there is no consensus on the notation issue.

Contextual Notes

Some calculations depend on specific assumptions about the definitions of the vectors and their relationships to Cartesian coordinates. The discussion includes unresolved questions about notation and conventions in vector representation.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Using spherical coordinates and the orthonormal system of vectors $\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\theta}, \overrightarrow{e}_{\phi}$
  1. describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ and $\overrightarrow{e}_{\phi} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Using spherical coordinates and the orthonormal system of vectors $\overrightarrow{e}_{\rho}, \overrightarrow{e}_{\theta}, \overrightarrow{e}_{\phi}$
  1. describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ and
  2. calculate $\overrightarrow{e}_{\theta} \times \overrightarrow{j}$ and $\overrightarrow{e}_{\phi} \times \overrightarrow{j}$ with two ways: analytically, using (1), and geometrically.

Could you give me some hints how I could do that?? (Wondering)

Hey mathmari! :D

Easiest is to do it geometrically by drawing a vector in spherical coordinates, and deducing in which direction the vector changes if you change one of the spherical coordinates. (Thinking)

In this picture you can see how they should come out:
View attachment 4097

Or analytically by evaluating:
$$\overrightarrow{e}_{\rho} = \frac{\d {\overrightarrow r}{\rho}}{\lVert\d {\overrightarrow r}{\rho}\rVert}$$
 

Attachments

  • image004.gif
    image004.gif
    3.1 KB · Views: 141
I like Serena said:
Or analytically by evaluating:
$$\overrightarrow{e}_{\rho} = \frac{\d {\overrightarrow r}{\rho}}{\lVert\d {\overrightarrow r}{\rho}\rVert}$$

Is it as followed?? (Wondering)

$r=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$

$x=\rho \sin \phi \cos \theta , y=\rho \sin \phi \sin \theta , z=\rho \cos \phi$

$$\overrightarrow{e}_{\rho} = \frac{\d {\overrightarrow r}{\rho}}{\lVert\d {\overrightarrow r}{\rho}\rVert}=\frac{\sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k}}{\lVert \sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k} \rVert}=\sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k} \\

\overrightarrow{e}_{\theta} = \frac{\d {\overrightarrow r}{\theta}}{\lVert\d {\overrightarrow r}{\theta}\rVert}=\frac{-\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j}}{\lVert -\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j} \rVert}=\frac{-\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j}}{\sqrt{\rho^2 \sin^2 \phi}}=\frac{-\rho \sin \phi \sin \theta \overrightarrow{i}+\rho \sin \phi \cos \theta \overrightarrow{j}}{\rho \sin \phi}=- \sin \theta \overrightarrow{i}+ \cos \theta \overrightarrow{j}\\

\overrightarrow{e}_{\phi} = \frac{\d {\overrightarrow r}{\phi}}{\lVert\d {\overrightarrow r}{\phi}\rVert}=\frac{\rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k}}{\lVert \rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k} \rVert}=\frac{\rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k}}{\sqrt{\rho^2}}=\frac{\rho \cos \phi \cos \theta \overrightarrow{i}+\rho \cos \phi \sin \theta \overrightarrow{j}-\rho \sin \phi \overrightarrow{k}}{\rho}=\cos \phi \cos \theta \overrightarrow{i}+\cos \phi \sin \theta \overrightarrow{j}-\sin \phi \overrightarrow{k}$$
 
Yep! (Nod)
 
So, to describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ do we have to do the following?? (Wondering)

$r=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$

$x=\rho \sin \phi \cos \theta , y=\rho \sin \phi \sin \theta , z=\rho \cos \phi$

$\rho=\sqrt{x^2+y^2+z^2}$

$x^2+y^2=\rho^2 \sin^2 \phi \cos^2 \theta+\rho^2 \sin^2 \phi \sin^2 \theta=\rho^2 \sin^2 \phi \Rightarrow \rho \sin \phi = \sqrt{x^2+y^2}$

$\rho^2 \sin^2 \phi=x^2+y^2 \Rightarrow \rho \sin^2 \phi=\frac{x^2+y^2}{\rho} \Rightarrow \rho \sin^2 \phi=\frac{x^2+y^2}{\sqrt{x^2+y^2+z^2}}$

$z=\rho \cos \phi \Rightarrow \cos \phi=\frac{z}{\rho}=\cos \phi=\frac{z}{\sqrt{x^2+y^2+z^2}}$

$$\overrightarrow{e}_{\rho} =\sin \phi \cos \theta \overrightarrow{i}+\sin \phi \sin \theta \overrightarrow{j}+\cos \phi \overrightarrow{k} =\frac{1}{\rho} \left ( \rho \sin \phi \cos \theta \overrightarrow{i}+\rho \sin \phi \sin \theta \overrightarrow{j}+\rho \cos \phi \overrightarrow{k}\right )=\frac{1}{\sqrt{x^2+y^2+z^2}} \left ( x \overrightarrow{i}+y \overrightarrow{j}+z \overrightarrow{k}\right )\\

\overrightarrow{e}_{\theta} =- \sin \theta \overrightarrow{i}+ \cos \theta \overrightarrow{j}=\frac{1}{\rho} \left (- \rho \sin \theta \overrightarrow{i}+ \rho \cos \theta \overrightarrow{j}\right )=\frac{1}{\rho \sin \phi} \left (- \rho \sin \phi \sin \theta \overrightarrow{i}+ \rho \sin \phi \cos \theta \overrightarrow{j}\right )=\frac{1}{\sqrt{x^2+y^2}} \left (- y \overrightarrow{i}+ x \overrightarrow{j}\right )\\

\overrightarrow{e}_{\phi} =\cos \phi \cos \theta \overrightarrow{i}+\cos \phi \sin \theta \overrightarrow{j}-\sin \phi \overrightarrow{k}=\frac{1}{\rho \sin \phi }\left (\cos \phi \rho \sin \phi \cos \theta \overrightarrow{i}+\cos \phi \rho \sin\phi \sin \theta \overrightarrow{j}-\rho \sin^2 \phi \overrightarrow{k}\right )=\frac{1}{\sqrt{x^2+y^2}}\left (\frac{z}{\sqrt{x^2+y^2+z^2}}x \overrightarrow{i}+\frac{z}{\sqrt{x^2+y^2+z^2}}y \overrightarrow{j}-\frac{x^2+y^2}{\sqrt{x^2+y^2+z^2}} \overrightarrow{k}\right )$$
 
mathmari said:
So, to describe each of the $\overrightarrow{e}_{\rho}$, $\overrightarrow{e}_{\theta}$ and $\overrightarrow{e}_{\phi}$ as a function of $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$ and $(x, y, z)$ do we have to do the following?? (Wondering)

That looks to be correct. (Nod)

Btw, you can basically read off the end result directly from the geometrical representation of spherical coordinates. (Nerd)
$r=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$

Shouldn't that be $\overrightarrow{\rho}$ instead of $r$? (Wondering)
 
I like Serena said:
Shouldn't that be $\overrightarrow{\rho}$ instead of $r$? (Wondering)

Why? (Wondering)
 
mathmari said:
Why? (Wondering)

Well... $r$ is defined to be a vector.
Shouldn't it have an arrow over it then? (Wondering)

Furthermore, we have $\overrightarrow r = \rho \overrightarrow e_\rho$.
It's not required, but isn't it kind of conventional to use the same symbol for the length of a vector as for the vector itself? (Wondering)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K