# What is Spherical coordinates: Definition and 351 Discussions

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin, its polar angle measured from a fixed zenith direction, and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.
The radial distance is also called the radius or radial coordinate. The polar angle may be called colatitude, zenith angle, normal angle, or inclination angle.
The use of symbols and the order of the coordinates differs among sources and disciplines. This article will use the ISO convention frequently encountered in physics:

(
r
,
θ
,
φ
)

{\displaystyle (r,\theta ,\varphi )}
gives the radial distance, polar angle, and azimuthal angle. In many mathematics books,

(
ρ
,
θ
,
φ
)

{\displaystyle (\rho ,\theta ,\varphi )}
or

(
r
,
θ
,
φ
)

{\displaystyle (r,\theta ,\varphi )}
gives the radial distance, azimuthal angle, and polar angle, switching the meanings of θ and φ. Other conventions are also used, such as r for radius from the z-axis, so great care needs to be taken to check the meaning of the symbols.
According to the conventions of geographical coordinate systems, positions are measured by latitude, longitude, and height (altitude). There are a number of celestial coordinate systems based on different fundamental planes and with different terms for the various coordinates. The spherical coordinate systems used in mathematics normally use radians rather than degrees and measure the azimuthal angle counterclockwise from the x-axis to the y-axis rather than clockwise from north (0°) to east (+90°) like the horizontal coordinate system. The polar angle is often replaced by the elevation angle measured from the reference plane, so that the elevation angle of zero is at the horizon.
The spherical coordinate system generalizes the two-dimensional polar coordinate system. It can also be extended to higher-dimensional spaces and is then referred to as a hyperspherical coordinate system.

View More On Wikipedia.org
1. ### B Negative radius convention equivalent but not equal?

In https://en.wikipedia.org/wiki/Spherical_coordinate_system under the heading "Unique coordinates" using the convention (r,P,A) =(radial distance, polar angle, azimuthal angle) ("physicist's convention") we have (r,P,A) is equivalent to (-r,-P, π-A). My three dimensional imagination is...

26. ### Surface area of a shifted sphere in spherical coordinates

Homework Statement find the surface area of a sphere shifted R in the z direction using spherical coordinate system. Homework Equations $$S= \int\int \rho^2 sin(\theta) d\theta d\phi$$ $$x^2+y^2+(z-R)^2=R^2$$ The Attempt at a Solution I tried to use the sphere equation mentioned above and...
27. ### I Converting from spherical to cylindrical coordinates

I have the coordinates of a hurricane at a particular point defined on the surface of a sphere i.e. longitude and latitude. Now I want to transform these coordinates into a axisymmetric representation cylindrical coordinate i.e. radial and azimuth angle. Is there a way to do the mathematical...
28. ### A How to find the displacement vector in Spherical coordinate

Is there a way of subtracting two vectors in spherical coordinate system without first having to convert them to Cartesian or other forms? Since I have already searched and found the difference between Two Vectors in Spherical Coordinates as...
29. ### Angular Momentum in Spherical Coordinates

I've started on "Noether's Theorem" by Neuenschwander. This is page 35 of the 2011 edition. We have the Lagrangian for a central force: ##L = \frac12 m(\dot{r}^2 + r^2 \dot{\theta}^2 + r \dot{\phi}^2 \sin^2 \theta) - U(r)## Which gives the canonical momenta: ##p_{\theta} = mr^2...
30. ### Self adjoint operators in spherical polar coordinates

Hi, I have a general question. How do I show that an operator expressed in spherical coordinates is self adjoint ? e.g. suppose i have the operator i ∂/∂ϕ. If the operator was a function of x I know exactly what to do, just check <ψ|Qψ>=<Qψ|ψ> But what about dr, dphi and d theta
31. ### B Confusion about the radius unit vector in spherical coordinates

If the radius unit vector is giving us some direction in spherical coordinates, why do we need the angle vectors or vice versa?
32. ### Conservative force in spherical coordinates

Homework Statement Is ##F=(F_r, F_\theta, F_\varphi)## a conservative force? ##F_r=ar\sin\theta\sin\varphi## ##F_\theta=ar\cos\theta\sin\varphi## ##F_\varphi=ar\cos\varphi## Homework Equations ##\nabla\times F=0## The Attempt at a Solution In this case we have to use the curl for spherical...
33. ### B Triple integral in spherical coordinates.

While deriving the volume of sphere formula, I noticed that almost everyone substitute the limits 0 to 360 for the angle (theta) i.e the angle between the positive x-axis and the projection of the radius on the xy plane.Why not 0to 360 for the angle fi (angle between the positive z axis and...
34. ### Question about Spherical Metric and Approximations

Homework Statement This is Problem 2 from Chapter 1, Section V of A. Zee's Einstein Gravity in a Nutshell. Zee asks us to imagine a colony of "eskimo mites" that live at the north pole. The geometers of the colony have measured the following metric of their world to second order (with the...
35. ### I What is dx, dy and dz in spherical coordinates

What is dx, dy and dz in spherical coordinates
36. ### Laplacian in spherical coordinates

Homework Statement Hello at all! I have to calculate total energy for a nucleons system by equation: ##E_{tot}=\frac{1}{2}\sum_j(t_{jj}+\epsilon_j)## with ##\epsilon_j## eigenvalues and: ##t_{jj}=\int \psi_j^*(\frac{\hbar^2}{2m}\triangledown^2)\psi_j dr## My question is: if I'm in...
37. ### Vector potential in spherical coordinates

in this problem i can solve v = ω x r = <0, -ωrsinψ, 0> in cartesian coordinates but i don't understand A in sphericle coordinates why? (inside) A = ⅓μ0Rσ(ω x r) = ⅓μ0Rσωrsin(θ) θ^ how to convert coordinate ?
38. ### MHB Spherical coordinates and triple integrals

Suppose $\displaystyle f = e^{(x^2+y^2+z^2)^{3/2}}$. We want to find the integral of $f$ in the region $R = \left\{x \ge 0, y \ge 0, z \ge 0, x^2+y^2+z^2 \le 1\right\}$. Could someone tell me how we quickly determine that $R$ can be written as: \$R = \left\{\theta \in [0, \pi/2], \phi \in [0...
39. ### How to find the volume of a sphere [spherical coordinates]

i don't know to using limit of r ?
40. M

47. ### Equation for finding the gradient in spherical coordinates

<Mentor note: moved from a technical forum and therefore without template>So I´m trying to understand how to use the equation for finding the gradient in spherical coordinates, just going from cartesian to spherical seemed crazy. Now I´m at a point where I want to try out what I have read and I...
48. ### Finding the curl of velocity in spherical coordinates

Homework Statement The angular velocity vector of a rigid object rotating about the z-axis is given by ω = ω z-hat. At any point in the rotating object, the linear velocity vector is given by v = ω X r, where r is the position vector to that point. a.) Assuming that ω is constant, evaluate v...
49. ### Finding the Electric Field given the potential in spherical

Homework Statement The problem statement is in the attachment Homework Equations E[/B] = -∇φ ∇ = (∂φ/∂r)er The Attempt at a Solution I am confused about how to do the derivative apparently because the way I do it gives E = - (∂[p*r/4πε0r3]/∂r)er = 3*(p*r)/4πε0r4er
50. ### Need Help With Gradient (Spherical Coordinates)

Homework Statement Find te gradient of the following function f(r) = rcos(##\theta##) in spherical coordinates. Homework Equations \nabla f = \frac{\partial f}{\partial r} \hat{r} + (\frac{1}{r}) \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{rsin\theta}...