Spontaneous and stimulated emission in Planck's radiation law

Click For Summary
SUMMARY

The discussion centers on the separation of spontaneous emission (SPE) and stimulated emission (STE) within Planck's radiation law, as introduced by Einstein in 1917. The user explores the derivation of the contributions from both types of emission using Einstein's A and B coefficients, leading to the conclusion that the fraction of spontaneous emission aligns with Wien's distribution. The mathematical expressions derived clarify the relationship between the coefficients and the contributions of each emission type to the overall radiation spectrum. The conversation emphasizes the importance of understanding these contributions in the context of thermal equilibrium and quantum field theory (QFT).

PREREQUISITES
  • Understanding of Einstein's A and B coefficients in quantum mechanics
  • Familiarity with Planck's radiation law and its derivation
  • Knowledge of thermal equilibrium concepts in statistical mechanics
  • Basic principles of quantum field theory (QFT)
NEXT STEPS
  • Study the derivation of Planck's radiation law from quantum field theory (QFT)
  • Explore the implications of Wien's distribution in thermal radiation
  • Investigate the role of A and B coefficients in quantum mechanics
  • Learn about the kinetic theory of gases and its relation to emission processes
USEFUL FOR

Physicists, quantum mechanics students, and researchers in thermal radiation and quantum field theory will benefit from this discussion, particularly those interested in the nuances of emission processes in thermal systems.

dbabic
Messages
3
Reaction score
1
Hello,

Einstein introduced stimulated emission (along with spontaneous emission and absorption) to derive Planck's radiation law using his A and B coefficients in his 1917 paper. My question is, is it possible to separate the Planck radiation spectrum into a fraction that is spontaneous emission and a fraction that is stimulated emission? Is this even a good question? I took a simple simple approach and got the attached graph. Does anyone have an opinion on this?

Thank you...
 

Attachments

  • Slika_657.jpg
    Slika_657.jpg
    16.4 KB · Views: 172
Physics news on Phys.org
How did you define the separation in these two contributions? It's not clear to me, how to make such a split from the standard derivation of the Planck spectrum from QED.
 
Einstein's derivation assumes that all the generated EM radiation (spontaneous + stimulated) must be balanced by what's absorbed:

$$A_{21} N_2 + B_{21} N_2 \rho _{EM} (\omega ) = B_{12} N_1 \rho _{EM} (\omega )$$

where the first term is spontaneous (SPE) and the second stimulated emission (STE) and on the right is absorption. I evaluate the portion of the left side that is due to spontaneous emission. If you just divide the first term on the left side with the entire left side you get that the portion due to spontaneous emission is equal to

SPE contribution = ##1 - \exp( -\hbar\omega/kT )##
STE contribution = ##\exp( -\hbar\omega/kT )##

Now, I simply take the radiation law and multiply it by the fractions shown above to get the curve for SPE and STE.

The interesting thing is that the fraction of stimulated emission coincides exactly with Wien's distribution, which is the starting point of Einstein's arguments in the 1917 paper .
 
Last edited by a moderator:
  • Like
Likes   Reactions: vanhees71
Correction: the fraction of SPONTANEOUS emission coincides exactly with Wien's distribution.
 
@vanhees71 and @dbabic -- are you in agreement after the updates? We received a report that there may be confusion in this thread after some edits...

Thanks.
 
  • Like
Likes   Reactions: jim mcnamara and Nugatory
Ok, let's do the derivation a la Einstein. It's a kinetic argument for the occupation numbers of a two-level system due to thermal radiation, i.e., the two-level system is supposed to be in thermal equilibrium at temperature ##T##. Let ##N_1## and ##N_2## be the occupation numbers of the lower and upper level with energy difference ##E_2-E_1=\hbar \omega##:
$$\dot{N}_1=A_{21} N_2+B_{21} N_2 I-B_{12} N_1 I$$
$$\dot{N}_2=-A_{21} N_2-B_{21}N_2+B_{12} N_1 \rho=-\dot{N}_1.$$
Here ##A_{21}## is the transition rate for spontaneous emission, ##B_{21}## the rate for spontaneous emission, and ##B_{12}## for absorption, ##I## is the intensity (energy density) of the radiation.

In thermal equilibrium one has ##N_2/N_1=\exp[-\hbar \omega/(kT)]## and ##\dot{N}_1=\dot{N}_2=0##. From this one gets
$$(A_{21}+B_{21} I) \exp[-\hbar \omega/(kT)]=B_{12} I .$$
This gives
$$I=\frac{A_{21}}{B_{12} \exp[+\hbar \omega/(k T)]-B_{12}}.$$
On the other hand from equilibrium thermal QFT we can derive Planck's radiation Law
$$I = \frac{\hbar \omega^3}{\pi^2 c^3} \frac{1}{\exp[(\hbar \omega)/(k T)]-1}.$$
From this it follows
$$B_{12}=B_{21}, \quad \frac{A_{21}}{B_{12}}=\frac{\hbar \omega^3}{\pi^3 c^3}. \qquad (1)$$
So the spontaneous emission fraction is
$$\frac{A_{21} N_2}{B_{12} N_1 I}=\frac{\hbar \omega^3}{\pi^3 c^3}(1-\exp[-\hbar \omega/(k T)])$$
and of the induced emission
$$\frac{B_{21} I \exp[-\hbar \omega/(k T)]}{B_{12} I}=\exp[-\hbar \omega/(k T)].$$
So it's, of course, the induced emission part which coincides with Wien's radiation law.

The relations between the coefficients (1) can be directly derived from QFT too.
 
  • Like
Likes   Reactions: dextercioby

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
11
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 1 ·
Replies
1
Views
13K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
5K