Spring momentum conservation problem

AI Thread Summary
Momentum conservation in the spring momentum conservation problem is debated due to external forces acting on the masses, including gravity and spring force. If the system is defined to include the masses, spring, and gravitational source, momentum can be considered conserved as all forces become internal. The key factor is the time interval over which momentum is analyzed; if it is short enough, the effects of external forces can be negligible. Some argue that during the collision, the momentum of the individual masses is not conserved, but the combined system's momentum remains valid. Ultimately, the inclusion of the Earth in the system is crucial for accurate momentum conservation analysis.
member 731016
Homework Statement
I have successfully solved the problem below by assuming that momentum is conserved and that there is an inelastic collision occurring between the masses. However, I am wondering whether the momentum being conserved is a valid assumption that I have made.
Relevant Equations
##E_i = E_f##
##\vec p_i = \vec p_f##
For this problem,
1692395139491.png

The reason why I am not sure whether it is a valid assumption whether momentum is conserved because during the collision if we consider the two masses to be the system, then there will be a uniform gravitational field acting on both masses, and a spring force that is acting upwards. Therefore, there will be two external forces acting on the system. The only reason I can think of for momentum being conserved in this case is if the forces acting on the both the masses acted over such a short time interval that there was no change in the momentum due to the forces.

However, if we define the system as everything, the two masses, the spring, and the source of the g-field, then I believe everything is internal force pairs so momentum is conserved.

If someone please knows whether momentum is conserved is a valid assumption and why, that would be greatly appreciated!

Many thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
The only reason I can think of for momentum being conserved in this case is if the forces acting on the both the masses acted over such a short time interval that there was no change in the momentum due to the forces.
This reasoning is correct. Over the time interval that the masses stick together they are not displaced appreciably in the gravitational field.
 
  • Like
Likes member 731016
ChiralSuperfields said:
Homework Statement: I have successfully solved the problem below by assuming that momentum is conserved and that there is an inelastic collision occurring between the masses. However, I am wondering whether the momentum being conserved is a valid assumption that I have made.
Relevant Equations: ##E_i = E_f##
##\vec p_i = \vec p_f##

For this problem,
View attachment 330735
The reason why I am not sure whether it is a valid assumption whether momentum is conserved because during the collision if we consider the two masses to be the system, then there will be a uniform gravitational field acting on both masses, and a spring force that is acting upwards. Therefore, there will be two external forces acting on the system. The only reason I can think of for momentum being conserved in this case is if the forces acting on the both the masses acted over such a short time interval that there was no change in the momentum due to the forces.

However, if we define the system as everything, the two masses, the spring, and the source of the g-field, then I believe everything is internal force pairs so momentum is conserved.

If someone please knows whether momentum is conserved is a valid assumption and why, that would be greatly appreciated!

Many thanks!
The momentum of the 1.0 kg mass is clearly not conserved. Neither is the momentum of the 2.0 kg mass. But if you take the 1.0 kg mass, the 2.0 kg mass, and the spring (which is ideal, and thus massless) to be your system, then the momentum is conserved, (If you want to be picky, throw the Earth into this and use the Newtonian gravitational potential energy.)

-Dan
 
  • Like
Likes member 731016
topsquark said:
The momentum of the 1.0 kg mass is clearly not conserved. Neither is the momentum of the 2.0 kg mass. But if you take the 1.0 kg mass, the 2.0 kg mass, and the spring (which is ideal, and thus massless) to be your system, then the momentum is conserved, (If you want to be picky, throw the Earth into this and use the Newtonian gravitational potential energy.)

-Dan
That doesn’t really help. The issue is the time interval over which momentum is to be considered.
If you take the time up until the dropped mass reaches its lowest point, clearly momentum of the two mass+spring system is not conserved. Including the Earth is not being picky, it's essential.
To avoid that, we can use a very short time interval, making the assumption that the coalescence is achieved quickly.
In between these extremes, we could model the coalescence as a spring of high constant during compression and zero constant in relaxation.
 
  • Like
Likes member 731016 and topsquark
kuruman said:
This reasoning is correct. Over the time interval that the masses stick together they are not displaced appreciably in the gravitational field.
topsquark said:
The momentum of the 1.0 kg mass is clearly not conserved. Neither is the momentum of the 2.0 kg mass. But if you take the 1.0 kg mass, the 2.0 kg mass, and the spring (which is ideal, and thus massless) to be your system, then the momentum is conserved, (If you want to be picky, throw the Earth into this and use the Newtonian gravitational potential energy.)

-Dan
haruspex said:
That doesn’t really help. The issue is the time interval over which momentum is to be considered.
If you take the time up until the dropped mass reaches its lowest point, clearly momentum of the two mass+spring system is not conserved. Including the Earth is not being picky, it's essential.
To avoid that, we can use a very short time interval, making the assumption that the coalescence is achieved quickly.
In between these extremes, we could model the coalescence as a spring of high constant during compression and zero constant in relaxation.
Thank you for your replies @kuruman, @topsquark and @haruspex!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top