MHB Square Number Pairs from 1-50: Counting Rules

  • Thread starter Thread starter cooltu
  • Start date Start date
  • Tags Tags
    Integer
cooltu
Messages
7
Reaction score
0
Two integers will be taken from 1 to 50, where at least one of them should be a square number and sum of them should also be a square number. How many different pair like this can be found? Will I count (9,16) and (16,9) as one ?
 
Mathematics news on Phys.org
So $x^2+ y= z^2$ for x, y, and z integers. That is the same as $x^2- z^2= (x- z)(x+ z)= y$. Look at the ways to factor y: y= mn and the x- z= m, x+ z= n. Adding those two equations, 2x= m+ n, x= (m+ n)/2. Subtracting, 2z= n- m, z= (n- m)/2.

added much later: I've noticed that I have a sign error: from $x^2+ y= z^2$, $y= z^2- x^2$, not $x^2- x^2$. So y= (z- x)(z+ x). Taking y= mn, z- x= m, z+ x= n so that 2z= n+m, z= (n+m)/2, 2x= n- m so x= (n-m)/2, just the opposite of what I had before.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top