MHB Square of Integer: Showing Integer's Square

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Square
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\displaystyle \sum_{k=0}^{2013} \dfrac{4026!}{(k!(2013-k)!)^2}$ is the square of an integer.
 
Mathematics news on Phys.org
[sp]Expand $(1+x)^{2n} = (1+x)^n(1+x)^n$ binomially: $$\sum_{i=0}^{2n}{2n\choose i}x^i = \sum_{j=0}^n{n\choose j}x^j\sum_{k=0}^n{n\choose k}x^k.$$ Compare coefficients of $x^n$ on both sides: $${2n\choose n} = \sum_{k=0}^n{n\choose k}{n\choose n-k} = \sum_{k=0}^n\frac{(n!)^2}{\bigl(k!(n-k)!\bigr)^2}.$$ Now multiply both sides by $${2n\choose n} = \frac{(2n)!}{(n!)^2}$$ to get $${2n\choose n}^2 = \sum_{k=0}^n \frac{(2n)!}{\bigl(k!(n-k)!\bigr)^2}.$$ Then put $n=2013$ to get $$\sum_{k=0}^{2013} \dfrac{4026!}{(k!(2013-k)!)^2} = {4026\choose 2013}^2.$$[/sp]
 
Awesome, Opalg...and thanks for participating! :)

A method that is different than you and is also the proof by other:

We prove the more general statement:

$\displaystyle \sum_{k=0}^{n} \dfrac{(2n)!}{(k!(n-k)!)^2}={2n \choose n}^2$---(1)

Note that we have

$\displaystyle\dfrac{(2n)!}{(k!(n-k)!)^2}=\dfrac{(n)!}{(k!(n-k)!)^2}\cdot \dfrac{(2n)!}{(n!)^2}={n \choose k}^2\cdot{2n \choose n}$

Hence it suffices t show that

$\displaystyle \sum_{k=0}^{n} {n \choose k}^2={2n \choose n}$

We will do this combinatorially. Consider $2n$ balls, numbered from 1 up to $2n$. Balls 1 up to $n$ are colored green, and balls $n+1$ up to $2n$ are colored yellow. We can choose $n$ balls from these $2n$ balls in $\displaystyle {2n \choose n}$ ways.

On the other hand, we can also first choose $k$ green balls, with $0 \le k \le n$, and then choose $n-k$ yellow balls. Equivalently, we can chose $k$ green balls to include and $k$ yellow balls to not include. Hence the number of ways in which one can choose $n$ balls is also equal to $\displaystyle \sum_{k=0}^n {n \choose k}^2$.

Hence this sum is equal to ${2n \choose k}$. This proves (1) and we are done.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
23
Views
2K
Replies
1
Views
1K
Replies
1
Views
989
Replies
2
Views
1K
Replies
13
Views
1K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top