Squared Difference of Two Series: Why?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Difference Series
Click For Summary

Discussion Overview

The discussion revolves around the mathematical identity involving the squared difference of two series, specifically the expression $$\left(\sum_{i = 1}^n(x_i - y_i)\right)^2$$ and its expansion. Participants explore the validity of the identity, propose corrections, and test the formula with specific values.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 presents the identity and questions its validity.
  • Post 2 suggests a correction to the inequality in the second summation and proposes a proof by mathematical induction.
  • Post 3 argues that even with the proposed correction, the formula is incorrect and provides a simplification to illustrate the issue.
  • Post 4 reiterates the incorrectness of the formula, emphasizing the need for a factor of 2 and the removal of absolute value signs in the correct expansion.
  • Post 4 also proposes an alternative expression for the squared sum, indicating a different formulation that does not include absolute values.

Areas of Agreement / Disagreement

Participants express disagreement regarding the validity of the original formula and the proposed corrections. No consensus is reached on the correct formulation, and multiple competing views remain regarding the identity's accuracy.

Contextual Notes

Participants rely on specific cases (e.g., testing with \(n=2\)) to challenge the proposed identity, indicating that the discussion is limited to specific instances rather than a general proof. The discussion also highlights the dependence on the definitions and assumptions made about the variables involved.

Dustinsfl
Messages
2,217
Reaction score
5
$$
\left(\sum_{i = 1}^n(x_i - y_i)\right)^2 = \sum_{i = 1}^n(x_i - y_i)^2 + \sum_{1\leq i\leq j\leq n}|x_i - y_i||x_j-y_j|
$$
Why is this true?
 
Physics news on Phys.org
dwsmith said:
$$
\left(\sum_{i = 1}^n(x_i - y_i)\right)^2 = \sum_{i = 1}^n(x_i - y_i)^2 + \sum_{1\leq i{\color{red}<}j\leq n}|x_i - y_i||x_j-y_j|
$$
Why is this true?

Hi dwsmith, :)

I think you will be able prove this by mathematical induction. I further think that in the second summation the inequality should be changed as highlighted (you can verify this by taking \(n=1\)).

Kind Regards,
Sudharaka.
 
dwsmith said:
$$
\left(\sum_{i = 1}^n(x_i - y_i)\right)^2 = \sum_{i = 1}^n(x_i - y_i)^2 + \sum_{1\leq i\leq j\leq n}|x_i - y_i||x_j-y_j|
$$
Why is this true?
Even with the correction suggested by Sudharaka, this formula is not true. To start with, simplify it by writing $z_i = x_i-y_i$. The formula becomes $$ \Bigl(\sum_{i = 1}^nz_i\Bigr)^2 = \sum_{i = 1}^nz_i^2 + \sum_{1\leqslant i < j\leqslant n}|z_i||z_j|.$$

Test that formula by putting n=2. It becomes $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + |z_1||z_{\,2}|$. Compare that with the correct formula $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + 2z_1z_{\,2}$ and you see that two things are wrong: there is a missing 2, and the absolute value signs should not be there.
 
Opalg said:
Even with the correction suggested by Sudharaka, this formula is not true. To start with, simplify it by writing $z_i = x_i-y_i$. The formula becomes $$ \Bigl(\sum_{i = 1}^nz_i\Bigr)^2 = \sum_{i = 1}^nz_i^2 + \sum_{1\leqslant i < j\leqslant n}|z_i||z_j|.$$

Test that formula by putting n=2. It becomes $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + |z_1||z_{\,2}|$. Compare that with the correct formula $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + 2z_1z_{\,2}$ and you see that two things are wrong: there is a missing 2, and the absolute value signs should not be there.

Thank you for pointing that out. Thinking about this further I came up with the following. :)

\[\left(\sum_{i = 1}^nz_i\right)^2=\sum_{i=1}^{n}z_i^2 + \sum_{i\neq j}z_{i}z_{j}\]

Hence,

\[\left(\sum_{i = 1}^n(x_{i}-y_{i})\right)^2=\sum_{i=1}^{n}(x_{i}-y_{i})^2 + \sum_{i\neq j}(x_{i}-y_{i})(x_{j}-y_{j})\]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K