MHB Squared Difference of Two Series: Why?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Difference Series
Click For Summary
The discussion centers on the equation relating the squared difference of two series, specifically addressing the validity of the formula. A participant suggests using mathematical induction to prove the formula, while another points out that the proposed equation is incorrect due to missing factors and the inappropriate use of absolute values. They simplify the expression by defining \(z_i = x_i - y_i\) and demonstrate that the correct formula includes a factor of 2 and does not require absolute values. The conversation concludes with a refined version of the equation that accurately represents the relationship between the sums.
Dustinsfl
Messages
2,217
Reaction score
5
$$
\left(\sum_{i = 1}^n(x_i - y_i)\right)^2 = \sum_{i = 1}^n(x_i - y_i)^2 + \sum_{1\leq i\leq j\leq n}|x_i - y_i||x_j-y_j|
$$
Why is this true?
 
Physics news on Phys.org
dwsmith said:
$$
\left(\sum_{i = 1}^n(x_i - y_i)\right)^2 = \sum_{i = 1}^n(x_i - y_i)^2 + \sum_{1\leq i{\color{red}<}j\leq n}|x_i - y_i||x_j-y_j|
$$
Why is this true?

Hi dwsmith, :)

I think you will be able prove this by mathematical induction. I further think that in the second summation the inequality should be changed as highlighted (you can verify this by taking \(n=1\)).

Kind Regards,
Sudharaka.
 
dwsmith said:
$$
\left(\sum_{i = 1}^n(x_i - y_i)\right)^2 = \sum_{i = 1}^n(x_i - y_i)^2 + \sum_{1\leq i\leq j\leq n}|x_i - y_i||x_j-y_j|
$$
Why is this true?
Even with the correction suggested by Sudharaka, this formula is not true. To start with, simplify it by writing $z_i = x_i-y_i$. The formula becomes $$ \Bigl(\sum_{i = 1}^nz_i\Bigr)^2 = \sum_{i = 1}^nz_i^2 + \sum_{1\leqslant i < j\leqslant n}|z_i||z_j|.$$

Test that formula by putting n=2. It becomes $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + |z_1||z_{\,2}|$. Compare that with the correct formula $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + 2z_1z_{\,2}$ and you see that two things are wrong: there is a missing 2, and the absolute value signs should not be there.
 
Opalg said:
Even with the correction suggested by Sudharaka, this formula is not true. To start with, simplify it by writing $z_i = x_i-y_i$. The formula becomes $$ \Bigl(\sum_{i = 1}^nz_i\Bigr)^2 = \sum_{i = 1}^nz_i^2 + \sum_{1\leqslant i < j\leqslant n}|z_i||z_j|.$$

Test that formula by putting n=2. It becomes $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + |z_1||z_{\,2}|$. Compare that with the correct formula $(z_1+z_{\,2})^2 = z_1^2 + z_{\,2}^2 + 2z_1z_{\,2}$ and you see that two things are wrong: there is a missing 2, and the absolute value signs should not be there.

Thank you for pointing that out. Thinking about this further I came up with the following. :)

\[\left(\sum_{i = 1}^nz_i\right)^2=\sum_{i=1}^{n}z_i^2 + \sum_{i\neq j}z_{i}z_{j}\]

Hence,

\[\left(\sum_{i = 1}^n(x_{i}-y_{i})\right)^2=\sum_{i=1}^{n}(x_{i}-y_{i})^2 + \sum_{i\neq j}(x_{i}-y_{i})(x_{j}-y_{j})\]
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K