flyingpig
- 2,574
- 1
Homework Statement
Find the standard matrix of T
T: \mathbb{R}^2 \to \mathbb{R}^2 first performs a horizontal shear tha transforms e2 into e2 - 2e1 (leaving e1) unchanged) and then reflects points through the line x2 = x1
The Attempt at a Solution
e_1 = \begin{bmatrix}<br /> 1\\ <br /> 0<br /> \end{bmatrix}
e_2 = \begin{bmatrix}<br /> 0\\<br /> 1<br /> \end{bmatrix}
e_2 - 2e_1 = \begin{bmatrix}<br /> 2\\<br /> 1<br /> \end{bmatrix}
A= \begin{bmatrix}<br /> -2 & 1 \\ <br /> 1 & 0<br /> \end{bmatrix}
Now I am completely stuck, how do I do the reflection? I know the standard matrix is just
A= \begin{bmatrix}<br /> 0 & -1 \\ <br /> -1 & 0<br /> \end{bmatrix}
But how do I "add" this information to my old standard matrix?