A States & Observables: Are They Really Different?

  • #31
Morbert said:
What would the spectral decomposition of this matrix be? I.e. Could you write it as S^=∑S|S⟩⟨S|?
Say entropy is an observable in QM, in general for the set of same states, observed value differs in each observation, so
\sigma_S^2=<S^2>-<S>^2 \neq 0
What are the eigenstates of entropy? I do not know whether e.g., superpositon of systems of T=0, T_1, T_2 are valid statement or not.
 
Physics news on Phys.org
  • #32
Here's my crude attempt at framing Shannon entropy as an observable to be measured, motivated by this paper. Consider first an experiment to measure the observable ##A## of a system with state space ##\mathcal{H}## prepared in the state ##\rho##. What we actually want to measure is not ##A##, but the Shannon entropy of this experiment.

First we model multiple experimental runs by creating a new state space that is a product of ##N## copies of the original state space $$\mathcal{H'} = \mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}\otimes\dots$$This allows us to frame the relative frequencies of multiple experimental runs as a single observable, such that a single outcome is an observed set of relative frequencies ##\{f_i\}## with probability $$p(\{f_i\}) = \mathrm{tr}\rho'\Pi_{\{f_i\}}$$ For a standard experiment, and for a large enough ##N##, the probability for a particular set of relative frequencies should be close to 1. The relative frequencies are the observed frequencies, and will approximate the set of probabilities ##\{p_i\}## determined by ##\rho## and ##A##. You can then compute Shannon entropy the usual way from these probabilities.

To emphasise: Shannon entropy seems to be more an objective property of the experiment than a property of the microscopic system to be measured.
 
Last edited:
  • Like
Likes gentzen, vanhees71, anuttarasammyak and 1 other person
  • #33
Formally entropy is not an observable. This is clear from the formal definition a la von Neumann,
$$S=-\mathrm{Tr}(\hat{\rho} \ln \hat{\rho}),$$
i.e., it is a property of the state rather than a state-independent observable.

Also the above assertions concerning thermodynamic entropy don't show that you can "measure" entropy dircectly. What's quoted from Wikipedia above, i.e., measuring entropy differences by measuring ##\mathrm{d} S=-\delta Q/T##, where ##Q## is the heat energy in the system, is indeed only indirect and only valid for the special case of equilibrium.
 
  • Like
Likes LittleSchwinger

Similar threads

Replies
16
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
175
Views
12K
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
Replies
4
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
6K