Stirling's Approximation for a factorial raised to a power

rmiller70015
Messages
110
Reaction score
1
Homework Statement
Find Stirling's Approximation for ##[(\alpha - 1)!]^2##
Relevant Equations
For large N: ##log(N!) \approx Nlog(N)-N##
Using log identities:
##log((\alpha - 1)!^2) = 2(log(\alpha - 1)!)##
Then apply Stirling's Approximation
##(2[(\alpha - 1)log(\alpha - 1) - (\alpha - 1)##
## = 2(\alpha -1)log(\alpha -1) - 2\alpha+2##

Is this correct? I can't find a way to check this computationally.
 
Physics news on Phys.org
rmiller70015 said:
Homework Statement:: Find Stirling's Approximation for ##[(\alpha - 1)!]^2##
Relevant Equations:: For large N: ##log(N!) \approx Nlog(N)-N##

Using log identities:
##log((\alpha - 1)!^2) = 2(log(\alpha - 1)!)##
Then apply Stirling's Approximation
##(2[(\alpha - 1)log(\alpha - 1) - (\alpha - 1)##
## = 2(\alpha -1)log(\alpha -1) - 2\alpha+2##

Is this correct? I can't find a way to check this computationally.
I don't think it's correct, and I get something different. If you want to approximate ##[(\alpha - 1)!]^2##, first use Stirling's to approximate ##(\alpha - 1)!##, and then square that result.
 
Last edited:
Thanks, that was bugging me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top