Stopping distances on a downward slope

In summary, a 1500 kg car traveling at 30.0 m/s on a 10o slope comes to a stop after the driver slams on the brakes. The stopping distance can be determined using the formula KE = frictional force * stopping distance - acceleration due to gravity * stopping distance, after resolving the force of gravity into two component vectors.
  • #1
GayYoda
10
0

Homework Statement


A 1500 kg car is traveling at a speed of 30.0 m s-1 when the driver slams on the brakes and skids to a halt. Determine the stopping distance if the car is traveling down a 10o slope. The coefficient of kinetic friction between the car
and the road is 0.80.

Homework Equations


F=ma

The Attempt at a Solution


i know that KE = Frictional force * stopping distance and i think in this case it is KE = frictional force * stopping distance - acceleration due to gravity * stopping distance but i can't work out what the acceleration due to gravity because of the slope
 
Last edited:
Physics news on Phys.org
  • #2
  • #3
Hints:

Does the car only have KE at the start of the skid?

You can resolve any vector such as the force of gravity into two component vectors at right angles to each other.
 
  • #4
GayYoda said:
i know that KE = Frictional force * stopping distance
That is valid in a horizontal plane. What when the plane is at an angle ?
 

Related to Stopping distances on a downward slope

1. What is a stopping distance on a downward slope?

A stopping distance on a downward slope refers to the distance a vehicle needs to come to a complete stop when traveling downhill. It takes into account both the reaction time of the driver and the braking distance of the vehicle.

2. How is the stopping distance affected by the slope?

The stopping distance on a downward slope is longer compared to a flat road due to the increased gravitational force pulling the vehicle downhill. This means the vehicle will require more braking force to come to a complete stop.

3. What factors affect the stopping distance on a downward slope?

The factors that affect the stopping distance on a downward slope include the slope angle, vehicle speed, road conditions, and the condition of the vehicle's brakes. Other factors such as weather conditions and the weight of the vehicle can also play a role.

4. How can I calculate the stopping distance on a downward slope?

The stopping distance on a downward slope can be calculated by using the equation: Stopping Distance = Reaction Distance + Braking Distance. The reaction distance is the distance traveled by the vehicle during the driver's reaction time, while the braking distance is the distance traveled while the vehicle is braking. Both of these distances can be affected by the slope of the road.

5. How can I ensure a safe stopping distance on a downward slope?

To ensure a safe stopping distance on a downward slope, it is important to maintain a safe speed and keep a safe distance from other vehicles. Regular maintenance of the vehicle's brakes is also crucial. It is also important to pay attention to road conditions and adjust your driving accordingly on a downward slope.

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
978
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
7
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
4K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
9
Views
3K
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
2K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
1K
Back
Top