Strong induction hypothesis for statement about connected graphs

  • Context: MHB 
  • Thread starter Thread starter find_the_fun
  • Start date Start date
  • Tags Tags
    Graphs Induction
Click For Summary
SUMMARY

The discussion focuses on using strong induction to prove that a connected graph \( G \) with every vertex having an even degree contains a Eulerian Circuit. The base case is verified for graphs with no edges. The strong induction hypothesis is formulated as: for any graph \( G \) with at most \( k \) edges, if \( G \) is connected and every vertex has even degree, then \( G \) possesses a Eulerian Circuit. The participants clarify the structure of the induction hypothesis and the application of the hypothesis to subgraphs formed by removing edges from the longest circuit.

PREREQUISITES
  • Strong induction principles in graph theory
  • Understanding of Eulerian Circuits
  • Graph connectivity concepts
  • Even degree vertex properties in graphs
NEXT STEPS
  • Study the formal proof of Euler's theorem on Eulerian Circuits
  • Learn about graph connectivity and its implications on subgraphs
  • Explore the properties of even degree vertices in graph theory
  • Investigate the application of strong induction in combinatorial proofs
USEFUL FOR

Mathematicians, computer scientists, and students studying graph theory, particularly those interested in proofs involving Eulerian Circuits and induction methods.

find_the_fun
Messages
147
Reaction score
0
Use strong induction to prove that if G is connected and every vertex has even degree that G has a Eulerian Circuit.

a)verify the base case where G has no edges - done
b)Write down the strong induction hypothesis that asserts the statement is true for all graphs that meet the hypotheses and have at most k edges.

I'm not sure if I did b right. Here's what I got
Assume that G is connected and it has a Eularian Circuit if has at most k edges and ever vertex has an even degree.

Is this right? In the induction hypothesis a new constant is introduced, which is k in this case.
 
Physics news on Phys.org
Re: strong induction hypothesis for statement about connected graphs

find_the_fun said:
Assume that G is connected and it has a Eularian Circuit if has at most k edges and ever vertex has an even degree.
First, I would exclude the word "assume" from the hypothesis itself. If the hypothesis is $P(k)$, then the induction step starts with "Assume $P(k)$", and this would make two "assume"s in a row. Second, you need to move "$G$ is connected" to the premise of the assumption. If $P(k)$ has the form "$G$ is connected and (... ⇒ ...)", then, when you are proving $P(k+1)$, you have to prove, in particular, that $G$ with at most $k+1$ edges is connected. Instead, you should assume that it is connected.

Finally, you are right that the hypothesis contains a new variable $k$. What about $G$? There are two options: either $G$ is free in $P(k)$ and is thus the same in $P(k)$ and $P(k+1)$, or it is bound by a universal quantifier. The first case happens when you fix $G$ before starting induction, i.e., when you start the proof by saying "Fix an arbitrary $G$ and then apply a strong induction on $k$". In this case, $G$ is the same throughout the whole induction process. But this does not make sense because $G$ is supposed to have different number of edges. Formally, in proving the induction step $P(k)\implies P(k+1)$, you assume $P(k)$ and the premise of $P(k+1)$, which says that $G$ has at most $k+1$ edges. But then you cannot apply $P(k)$ because its own premise says that the same $G$ has at most $k$ edges. Therefore, you need the second option, where $G$ is universally quantified in $P(k)$.

Altogether, the induction hypothesis $P(k)$ should be as follows: For any graph $G$ with at most $k$ edges, if $G$ is connected and every vertex of $G$ has even degree, then $G$ has a Eulerian circuit.
 
Re: strong induction hypothesis for statement about connected graphs

Ok thanks. The next part asks to explain why the induction hypothesis can be applied to the subgraph H constructed by deleting the edges in the longest circuit in G.

What I don't get is how can you explain the induction step still applies? Isn't it just saying assume something is true, so how could it not apply?
 
Re: strong induction hypothesis for statement about connected graphs

find_the_fun said:
The next part asks to explain why the induction hypothesis can be applied to the subgraph H constructed by deleting the edges in the longest circuit in G.

What I don't get is how can you explain the induction step still applies? Isn't it just saying assume something is true, so how could it not apply?
Suppose there is a graph $G$ satisfying the premise of $P(k+1)$, i.e., $G$ has at most $k+1$ edges, $G$ is connected and every vertex of $G$ has even degree. Let $G'$ be obtained from $G$ by deleting the edges in the longest circuit. The question asks to show that $G'$ satisfies the premise of $P(k)$, i.e., $G'$ has at most $k$ edges, $G'$ is connected and every vertex of $G'$ has even degree. This way, the conclusion of $P(k)$ applies to $G'$ as well, i.e., $G'$ has a Eulerian circuit, from which we then construct a Eulerian circuit in $G$.
 
Re: Strong induction hypothesis for statement about connected graphs

Ok so I need to show that
1)G' is connected
2)G' has at most k edges
3)Each edge is G' has even degree

I think I'm getting it now.
 

Similar threads

Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
4K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K