Sturm-Liouiville: Why Does Integral Equal 0 or m=n?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the implications of the equality of integrals involving eigenfunctions in the context of Sturm-Liouville theory. Participants explore the conditions under which the integral of the product of two eigenfunctions equals zero or when the indices of those functions are equal, focusing on the mathematical reasoning behind these relationships.

Discussion Character

  • Technical explanation, Conceptual clarification, Debate/contested

Main Points Raised

  • One participant questions the implication of the equality of two integrals, suggesting that the equality does not necessarily lead to the conclusion that either $m = n$ or the integral is zero.
  • Another participant provides a detailed derivation involving Legendre polynomials and the Sturm-Liouville differential equation, leading to the conclusion that if $n \neq \ell$, then the integral of the product of the eigenfunctions must be zero.
  • A later reply references the standard argument regarding the orthogonality of eigenfunctions corresponding to different eigenvalues in the context of Hermitian operators.

Areas of Agreement / Disagreement

Participants express differing views on the implications of the integral equality, with some supporting the idea that it leads to orthogonality while others challenge the reasoning behind it. The discussion remains unresolved regarding the initial claim about the equality of integrals.

Contextual Notes

Some assumptions about the properties of the eigenfunctions and the nature of the Sturm-Liouville problem are implicit in the discussion, but they are not explicitly stated or agreed upon by all participants.

Dustinsfl
Messages
2,217
Reaction score
5
Given
$$
\lambda^2\int_{-1}^1y_ny_mdx = \lambda^2\int_{-1}^1y_my_ndx
$$
Why does this imply that either $m = n$ or the integral is 0?
 
Physics news on Phys.org
You've marked this thread as solved. I'm a bit puzzled by the question myself, though. The two integrals are equal, period, because multiplication is commutative. The equality of those two integrals implies nothing whatsoever. Did you mean, instead, that
$$\lambda^{2}\int_{-1}^{1}y_{n}y_{n}\,dx=\lambda^{2}\int_{-1}^{1}y_{m}y_{m}\,dx?$$
 
Ackbach said:
You've marked this thread as solved. I'm a bit puzzled by the question myself, though. The two integrals are equal, period, because multiplication is commutative. The equality of those two integrals implies nothing whatsoever. Did you mean, instead, that
$$\lambda^{2}\int_{-1}^{1}y_{n}y_{n}\,dx=\lambda^{2}\int_{-1}^{1}y_{m}y_{m}\,dx?$$

I was looking at a paper about the Legendre polynomials, and I didn't understand what they were doing. I then realized they should have indexed there lambdas.We can rewrite $(1 - x^2)y_{\ell}'' - 2xy_{\ell}' + \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}$ as
\begin{alignat}{3}
\frac{d}{dx}\left[(1 - x^2)y_{\ell}'\right] + \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell} & = & 0\notag\\
\frac{d}{dx}\left[(1 - x^2)y_{\ell}'\right] & = & - \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}\notag\\
y_n\frac{d}{dx}\left[(1 - x^2)y_{\ell}'\right] & = & - \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_n\notag\\
\int_{-1}^1y_n\left[(1 - x^2)y_{\ell}'\right]'dx & = & - \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx
\end{alignat}
Integrating (2) by parts where $u = y_n$ and $dv = [(1 - x^2)y_{\ell}']'$, we have
\begin{alignat*}{3}
\underbrace{\left.(1 - x^2)y_n'y_{\ell}\right|_{-1}^1}_{ = 0} - \int_{-1}^1(1 - x^2)y_n'y_{\ell}'dx & = & - \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx\\
\int_{-1}^1(1 - x^2)y_n'y_{\ell}'dx & = & \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx
\end{alignat*}
Since we could have started with $y_n$ and the choice of $y_{\ell}$ was arbitrary, we would also have
$$
\int_{-1}^1(1 - x^2)y_n'y_{\ell}'dx = \int_{-1}^1\left(\lambda_{n}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx.
$$
Therefore, we have that
\begin{alignat*}{3}
\int_{-1}^1\left(\lambda_{n}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx & = & \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx\\
\int_{-1}^1\left(\lambda_{n}^2y_{\ell}y_n - \frac{m^2}{1 - x^2}y_{\ell}y_n - \lambda_{\ell}^2y_{\ell}y_n + \frac{m^2}{1 - x^2}y_{\ell}y_n\right)dx & = & 0\\
(\lambda_n^2 - \lambda_{\ell}^2)\int_{-1}^1y_{\ell}yndx & = & 0
\end{alignat*}
When $n\neq\ell$, $\lambda_n^2 - \lambda_{\ell}^2$ is non-zero; therefore, $\int_{-1}^1y_{\ell}yndx = 0$.
 
Ah, yes; the standard argument that for an Hermitian operator (corresponding to the Sturm-Liouville DE), eigenfunctions corresponding to different eigenvalues are orthogonal.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K