Sturm-Liouiville: Why Does Integral Equal 0 or m=n?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the Sturm-Liouville problem and the orthogonality of eigenfunctions. It establishes that the integral $$\int_{-1}^1 y_{\ell} y_n \, dx = 0$$ holds true when $n \neq \ell$, due to the non-zero difference between eigenvalues $\lambda_n^2$ and $\lambda_{\ell}^2$. This conclusion is derived from the properties of Hermitian operators, confirming that eigenfunctions corresponding to different eigenvalues are orthogonal. The confusion arose from the interpretation of the equality of integrals, which was clarified through the derivation involving Legendre polynomials.

PREREQUISITES
  • Understanding of Sturm-Liouville theory
  • Familiarity with eigenvalues and eigenfunctions
  • Knowledge of Legendre polynomials
  • Basic calculus, particularly integration by parts
NEXT STEPS
  • Study the properties of Hermitian operators in functional analysis
  • Explore the derivation and applications of Legendre polynomials
  • Learn about orthogonality in the context of Sturm-Liouville problems
  • Investigate the implications of eigenvalue problems in differential equations
USEFUL FOR

Mathematicians, physicists, and engineers working with differential equations, particularly those involved in spectral theory and orthogonal functions.

Dustinsfl
Messages
2,217
Reaction score
5
Given
$$
\lambda^2\int_{-1}^1y_ny_mdx = \lambda^2\int_{-1}^1y_my_ndx
$$
Why does this imply that either $m = n$ or the integral is 0?
 
Physics news on Phys.org
You've marked this thread as solved. I'm a bit puzzled by the question myself, though. The two integrals are equal, period, because multiplication is commutative. The equality of those two integrals implies nothing whatsoever. Did you mean, instead, that
$$\lambda^{2}\int_{-1}^{1}y_{n}y_{n}\,dx=\lambda^{2}\int_{-1}^{1}y_{m}y_{m}\,dx?$$
 
Ackbach said:
You've marked this thread as solved. I'm a bit puzzled by the question myself, though. The two integrals are equal, period, because multiplication is commutative. The equality of those two integrals implies nothing whatsoever. Did you mean, instead, that
$$\lambda^{2}\int_{-1}^{1}y_{n}y_{n}\,dx=\lambda^{2}\int_{-1}^{1}y_{m}y_{m}\,dx?$$

I was looking at a paper about the Legendre polynomials, and I didn't understand what they were doing. I then realized they should have indexed there lambdas.We can rewrite $(1 - x^2)y_{\ell}'' - 2xy_{\ell}' + \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}$ as
\begin{alignat}{3}
\frac{d}{dx}\left[(1 - x^2)y_{\ell}'\right] + \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell} & = & 0\notag\\
\frac{d}{dx}\left[(1 - x^2)y_{\ell}'\right] & = & - \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}\notag\\
y_n\frac{d}{dx}\left[(1 - x^2)y_{\ell}'\right] & = & - \left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_n\notag\\
\int_{-1}^1y_n\left[(1 - x^2)y_{\ell}'\right]'dx & = & - \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx
\end{alignat}
Integrating (2) by parts where $u = y_n$ and $dv = [(1 - x^2)y_{\ell}']'$, we have
\begin{alignat*}{3}
\underbrace{\left.(1 - x^2)y_n'y_{\ell}\right|_{-1}^1}_{ = 0} - \int_{-1}^1(1 - x^2)y_n'y_{\ell}'dx & = & - \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx\\
\int_{-1}^1(1 - x^2)y_n'y_{\ell}'dx & = & \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx
\end{alignat*}
Since we could have started with $y_n$ and the choice of $y_{\ell}$ was arbitrary, we would also have
$$
\int_{-1}^1(1 - x^2)y_n'y_{\ell}'dx = \int_{-1}^1\left(\lambda_{n}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx.
$$
Therefore, we have that
\begin{alignat*}{3}
\int_{-1}^1\left(\lambda_{n}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx & = & \int_{-1}^1\left(\lambda_{\ell}^2 - \frac{m^2}{1 - x^2}\right)y_{\ell}y_ndx\\
\int_{-1}^1\left(\lambda_{n}^2y_{\ell}y_n - \frac{m^2}{1 - x^2}y_{\ell}y_n - \lambda_{\ell}^2y_{\ell}y_n + \frac{m^2}{1 - x^2}y_{\ell}y_n\right)dx & = & 0\\
(\lambda_n^2 - \lambda_{\ell}^2)\int_{-1}^1y_{\ell}yndx & = & 0
\end{alignat*}
When $n\neq\ell$, $\lambda_n^2 - \lambda_{\ell}^2$ is non-zero; therefore, $\int_{-1}^1y_{\ell}yndx = 0$.
 
Ah, yes; the standard argument that for an Hermitian operator (corresponding to the Sturm-Liouville DE), eigenfunctions corresponding to different eigenvalues are orthogonal.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K