The Lie group SU(2) is the set of unitary 2x2 matrices with determinant 1.(adsbygoogle = window.adsbygoogle || []).push({});

These matrices can be written

a b

-b* a*

Thus, as a manifold, we can think of a coordinate chart consisting of the four real numbers making up the two complex numbers a and b. It is a manifold of dimension 4.

The Lie algebra su(2) is the set of 2x2 matrices of the form

ic d+if

-d+if -ic

where here c, d, f are real numbers. Thus the dimension of su(2) is 3.

But su(2) is also supposed to be the tangent space of the identity element of SU(2). Shouldn't the tangent space of a manifold at any point have the same dimension as the manifold?

Either my identification of the dimension of SU(2) or su(2) is wrong, or my claim that the tangent space dimension is always equal to the manifold dimension is wrong. Which is it?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I SU(2) and su(2) have different dimensions?

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - different dimensions | Date |
---|---|

I A different way to express the span | Nov 26, 2017 |

I Difference between an Algebra and a Vector space | May 3, 2017 |

A Difference Between Outer and Tensor | Feb 26, 2017 |

I Difference Equation Boundary Conditions0. | Oct 10, 2016 |

Difference between dimension and rank | Dec 17, 2009 |

**Physics Forums - The Fusion of Science and Community**