##SU(2)## generators in ##1##, ##2## and ##3## dimensions

  • #1
1,344
33
The ##{\bf su}(2)## Lie algebra in a representation ##\bf R## is defined by

##[T^{a}_{\bf R},T^{b}_{\bf R}]=i\epsilon^{abc}T^{c}_{\bf R},##

where ##T^{a}_{\bf R}## are the ##3## generators of the algebra.

In ##2## dimensions, these generators are the Pauli matrices

##T^{1}_{\bf 1} = \frac{1}{2}\begin{pmatrix}0 & 1\\ 1 & 0 \end{pmatrix}, \qquad T^{2}_{\bf 1} = \frac{1}{2}\begin{pmatrix}0 & -i\\ i & 0 \end{pmatrix}, \qquad
T^{3}_{\bf 1} = \frac{1}{2}\begin{pmatrix}1 & 0\\ 0 & -1 \end{pmatrix}.##

In ##3## dimensions, these generators are

##T^{1}_{\bf 2} = \frac{1}{\sqrt{2}}\begin{pmatrix}0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \qquad T^{2}_{\bf 2} = \frac{1}{\sqrt{2}}\begin{pmatrix}0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}, \qquad
T^{3}_{\bf 2} = \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.##

------------------------------------------------------------------------------

1. How can you derive the generators in ##2## and ##3## dimensions?

2. What are the generators in ##1## dimension?
 

Answers and Replies

  • #2
1. The two-dimensional representation is the fundamental representation. You can find out what the matrices J in its Lie algebra are by writing ##e^{-itJ}## and requiring that this matrix is part of SU(2). This will give you a set of matrices of which you can pick a basis.

For the three-dimensional irrep, it is the symmetric part of the tensor product representation. You can construct the generators explicitly by constructing a basis for the tensor product space and checking how the representations act on this basis.

2. I will give you a hint: All 1x1 matrices commute so [A,B]=0 for any A and B.
 
  • #3
2. I will give you a hint: All 1x1 matrices commute so [A,B]=0 for any A and B.

So, are the matrices all equal to (0) for the one-dimensional representation?
 
  • #4
So, are the matrices all equal to (0) for the one-dimensional representation?
Yes. It is the trivial representation.
 
  • #5
It is also called non-faithful. Is this because every element of ##SU(2)## is being mapped to the same element, that is, ##1##?
 
  • #6
The three-dimensional representation is not faithful either - but it is not trivial. It maps ##A## and ##-A## to the same matrix.

The trivial representation by definition maps all group elements to the identity.

Also, you have a mistake it the third three-dimensional generator above - it should not be the identity.
 
  • Like
Likes spaghetti3451

Suggested for: ##SU(2)## generators in ##1##, ##2## and ##3## dimensions

Replies
3
Views
693
Replies
4
Views
393
Replies
17
Views
3K
Replies
2
Views
4K
Replies
2
Views
2K
Replies
5
Views
1K
Replies
1
Views
1K
Replies
4
Views
2K
Replies
11
Views
2K
Back
Top