Subspace spanned by subsets of polynomials

Click For Summary

Discussion Overview

The discussion revolves around the subspaces spanned by various subsets of polynomials within the linear space of all real polynomials. Participants explore the dimensions of these subspaces and the nature of the polynomials involved, including definitions and potential ambiguities in terminology.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants describe the subspace spanned by the set $\{1,t^2,t^4\}$ as containing all biquadratic polynomials, asserting that it has dimension 3 and is spanned by the basis $\{1,t^2,t^4\}$.
  • Others note that the term "biquadratic polynomial" may refer to polynomials of degree 4, suggesting that the subspace also includes polynomials of lesser degree.
  • For the set $\{t,t^3,t^4\}$, some participants argue it spans polynomials of degree less than or equal to 4, also claiming dimension 3, while others emphasize the absence of quadratic and constant terms.
  • Regarding the set $\{t,t^2\}$, participants agree it spans polynomials of degree less than or equal to 2, with dimension 2, and is spanned by $\{t,t^2\}$.
  • In discussing the set $\{1+t,(1+t)^2\}$, some participants assert it spans a space of quadratic functions, while others challenge this by stating that the dimension of polynomials of degree $\le2$ is 3, suggesting it cannot be spanned by just two polynomials.
  • Participants propose alternative bases for the space spanned by $\{1+t,(1+t)^2\}$, indicating flexibility in how the space can be described.

Areas of Agreement / Disagreement

There is no consensus on the definitions and dimensions of the subspaces discussed, particularly regarding the characterization of biquadratic polynomials and the dimension of the space spanned by $\{1+t,(1+t)^2\}$. Multiple competing views remain on these topics.

Contextual Notes

Participants express uncertainty regarding the definitions of polynomial types and their implications for the dimensions of the respective subspaces. The discussion highlights the potential for varying interpretations of polynomial spaces based on definitions.

Guest2
Messages
192
Reaction score
0
In the linear space of all real polynomials $p(t)$, describe the subspace spanned by each of the following subsets of polynomials and determine the dimension of this subspace.

(a) $$\left\{1,t^2,t^4\right\}$$, (b)$$ \left\{t,t^3,t^4\right\}$$, (c) $$\left\{t,t^2\right\}$$, (d) $\left\{1+t, (1+t)^2\right\}$

(a) Let $a_1, a_2, a_3$ be scalars. Then the subspace spanned by $$\left\{1,t^2,t^4\right\}$$ is the set $ l(t) = \left\{a_1t^4+a_2t^2+a_3\right\}$. This is the space of all biquadratic polynomials. To find the dimension, we need to show that $$\left\{1,t^2,t^4\right\}$$ is a basis for this set. We already have that it spans set of all biquadratic polynomials. To find that it's linearly independent, suppose that $a_1t^4+a_2t^2+a_3 = 0$ for all $t$. But this can only happen if $a_1 = a_2 = a_3 = 0$. Therefore $$\left\{1,t^2,t^4\right\}$$ is a basis for $l(t)$. Therefore $\text{dim}(l(t)) = 3$. Is this close enough?

(b) I think $$\left\{t,t^3,t^4\right\}$$ spans the set $ l(t) = \left\{a_1t+a_2t^3+a_3t^4: a_1, a_2, a_3 \in \mathbb{R}\right\}$. It's the space of all polynomials of degree less than or equal to $4$ with no quadratic and constant terms. $$\left\{t,t^3,t^4\right\}$$ is also a basis for this space because $a_1t+a_2t^3+a_3t^4 = 0 $ for all $t$ implies $a_1 = a_2 = a_3 = 0$. Therefore $\text{dim}(l(t)) = 3$.

(c) $$\left\{t,t^2\right\}$$ spans the set $ l(t) = \left\{a_1t+a_2t^2: a_1, a_2 \in \mathbb{R}\right\}$. It's the space of all polynomials of degree less than or equal to $2$ with no constant terms. $$\left\{t, t^2\right\}$$ is also a basis for this space because $a_1t+a_2t^2= 0 $ for all $t$ implies $a_1 = a_2 = 0$. Therefore $\text{dim}(l(t)) = 2$.

(d) $\left\{1+t,(1+t)^2\right\}$ spans the set $ l(t) = \left\{a_1(1+t)+a_2(1+t)^2: a_1, a_2 \in \mathbb{R}\right\}$. It's the space of all quadratic functions. $$\left\{1+t, (1+t)^2\right\}$$ is also a basis for this space because $a_1(1+t)+a_2(1+t)^2 = (a_1+a_2)+(2a_2+a_1)t+a_2t^2 = 0 $ for all $t$ implies $a_1 = a_2 = 0$. Therefore $\text{dim}(l(t)) = 2$.
 
Last edited:
Physics news on Phys.org
Guest said:
(a) Let $a_1, a_2, a_3$ be scalars. Then the subspace spanned by $$\left\{1,t^2,t^4\right\}$$ is the set $ l(t) = \left\{a_1t^4+a_2t^2+a_3\right\}$.
It should say $\{a_1t^4+a_2t^2+a_3\mid a_1,a_2,a_3\in\Bbb R\}$.

Guest said:
This is the space of all biquadratic polynomials.
Depending on the definition, "biquadratic polynomial" may mean a polynomial of degree 4 (with other conditions). This subspace also contains polynomials of lesser degree.

Guest said:
(d) $\left\{1+t,(1+t)^2\right\}$ spans the set $ l(t) = \left\{a_1(1+t)+a_2(1+t)^2: a_1, a_2 \in \mathbb{R}\right\}$. It's the space of all quadratic functions.
The dimension of the space over $\Bbb R$ of polynomials of degree $\le2$ is $3$, so it cannot be spanned by two polynomials.
 
Thank you.
Evgeny.Makarov said:
It should say $\{a_1t^4+a_2t^2+a_3\mid a_1,a_2,a_3\in\Bbb R\}$.

Depending on the definition, "biquadratic polynomial" may mean a polynomial of degree 4 (with other conditions). This subspace also contains polynomials of lesser degree.
So the space of all even polynomials of degree $ \le 4$ would have been a better description?

The dimension of the space over $\Bbb R$ of polynomials of degree $\le2$ is $3$, so it cannot be spanned by two polynomials.

How would you describe the space $l(t) = \left\{a_1(1+t)+a_2(1+t)^2: a_1, a_2 \in \mathbb{R}\right\}$?
 
Last edited:
Guest said:
How would you describe the space $l(t) = \left\{a_1(1+t)+a_2(1+t)^2: a_1, a_2 \in \mathbb{R}\right\}$?
You can provide different bases, such as $(1+t,1+2t+t^2)$, $(t+t^2,1+2t+t^2)$ or $(1+t,t+t^2)$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K