I am trying to visualize the subsppace topology that is generated when you take the Rationals as a subset of the Reals.(adsbygoogle = window.adsbygoogle || []).push({});

So if we have ℝ with the standard topology, open sets in a subspace topology induced by Q would be the intersection of every open set O in ℝ with Q. Since each open set in ℝ is an open interval (a,b), and because between any two reals there are an infinite number of both rationals and irrationals, I'm picturing open sets in the subspace topology as infinite sets of rational numbers. What I mean is, you wouldn't ever have a singleton set. You'd have say, the infinite number of rationals included in any interval (a,b). Am I right in this thought?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Subspace topology of Rationals on Reals

**Physics Forums | Science Articles, Homework Help, Discussion**