Such That" vs. "iff": A Closer Look

  • Context: MHB 
  • Thread starter Thread starter E01
  • Start date Start date
Click For Summary
SUMMARY

The discussion clarifies the distinction between "such that" and logical implications such as "iff" and "if...then" in mathematical contexts. Specifically, "such that" is used to define sets based on properties, exemplified by the notation $S = \{x \in T \text{ such that } P(x)\}$, which indicates that an element belongs to set S if it satisfies both conditions of being in T and having property P. The conversation emphasizes that "such that" operates as a conjunction rather than a conditional statement. Additionally, the definition of the image of a set under a function is explored, highlighting the importance of understanding surjective functions and pre-images.

PREREQUISITES
  • Understanding of set theory and notation
  • Familiarity with functions and their properties, particularly surjectivity
  • Basic knowledge of logical implications in mathematics
  • Ability to interpret mathematical definitions and notation
NEXT STEPS
  • Study the concept of surjective functions in detail
  • Learn how to use LaTeX for mathematical typesetting
  • Explore set-builder notation and its applications in mathematics
  • Investigate logical operators and their usage in mathematical proofs
USEFUL FOR

Mathematicians, educators, and students who are engaged in understanding set theory, functions, and logical reasoning in mathematics will benefit from this discussion.

E01
Messages
8
Reaction score
0
This may seem like a dumb question but I'm not sure whether "such that" is equivalent to "iff" or "if then".

Here is what confused me. The image of A "f(A)" is defined as y element of Y such that for some x element of A, y=f(A). I could say there exists some element x such that y=f(A).

I'm not sure if I can say in a proof that if y=f(A) then there exists some x element of A.

Sometimes it seems like A such that B means "if then".
 
Physics news on Phys.org
E01 said:
Here is what confused me. The image of A "f(A)" is defined as y element of Y such that for some x element of A, y=f(A). I could say there exists some element x such that y=f(A).
This is not a correct definition. For one, you say "x such that" and then don't mention x. Could you give a correct definition and start by saying what $f$, $A$ and $Y$ are?
 
E01 said:
This may seem like a dumb question but I'm not sure whether "such that" is equivalent to "iff" or "if then".

Here is what confused me. The image of A "f(A)" is defined as y element of Y such that for some x element of A, y=f(A). I could say there exists some element x such that y=f(A).

I'm not sure if I can say in a proof that if y=f(A) then there exists some x element of A.

Sometimes it seems like A such that B means "if then".

In my experience, "such that" usually occurs in THIS setting:

$S = \{x \in T \text{ such that } P(x)\}$

where $P$ is some property $x$ has, in other words:

$x \in S \iff (x \in T) \wedge P(x)$

For example:

$2\Bbb Z = \{k \in \Bbb Z \text{ such that } 2|k\}$

which says two things:

1. $k$ is an integer
2. $k$ is divisible by 2.

In this example, "such that" doesn't play the role of "if...then", "only if" OR "iff", it plays the role of "and".
 
Thanks for the response Deveno. That makes sense. So I would say y is an element of Y and y=f(A) for some x element of A.

In response to Evgeny.

I forgot the starting portion of the definition. Let X and Y be sets. Let f be a function from X onto Y. A is a subset of X. We define the image of A as the set f(A) where y is an element of Y such that y=f(A) for some element x element of A.

I need to learn to use LaTeX.
 
In response to what I THINK you were trying to ask:

If f(A) = Y, then yes, there is SOME x in X with f(x) = y, for any y in Y you care to choose. This is often taken as the definition of "surjective" or "onto". Such an x is called a "pre-image" for y.

If, however, f(A) is not all of Y, then we cannot say this necessarily.

Example:

The function f:{1,2} --> {1,2} defined by:

f(1) = 1
f(2) = 1

is not onto, there is no pre-image of 2.

The function f:{1,2}-->{1} defined with the same values IS onto, as there is only one element in the co-domain, 1, and it has a pre-image (actually, it has two).

Any function f:X-->Y can be made into an onto function by considering f (with the same values at every x in X):

f:A --> f(A).

This underscores something that is often overlooked with functions: the "target-set" (the co-domain) is part of the definition, and f is not determined SOLELY by its values.

If all one is concerned about is f(x) for various x's, as in calculation of maximum or minimum values, often one does not think much about this, but it can be critical.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K