Such That" vs. "iff": A Closer Look

  • Context: MHB 
  • Thread starter Thread starter E01
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the interpretation of the phrases "such that," "iff," and "if...then" in mathematical contexts, particularly in relation to function definitions and set notation. Participants explore the nuances of these terms and their implications in proofs and definitions.

Discussion Character

  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants express uncertainty about whether "such that" is equivalent to "iff" or "if...then," particularly in the context of defining the image of a set under a function.
  • One participant provides a definition of the image of a set, stating that it is defined as y element of Y such that for some x element of A, y=f(A), but acknowledges confusion regarding its implications in proofs.
  • Another participant critiques the initial definition, suggesting it lacks clarity and requests a more precise formulation of the terms involved.
  • A participant argues that "such that" typically indicates a conjunction rather than a conditional relationship, providing an example involving set notation to illustrate this point.
  • Further contributions clarify the concept of surjectivity, explaining that if a function is onto, then for every y in Y, there exists some x in X such that f(x) = y, but this does not hold if the function is not onto.
  • Participants discuss the importance of the co-domain in defining functions and how this affects the interpretation of "such that" in mathematical contexts.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the equivalence of "such that" with "iff" or "if...then." Multiple competing views remain regarding the interpretation and usage of these terms in mathematical definitions.

Contextual Notes

Some limitations in the discussion include missing definitions of terms and assumptions about the reader's familiarity with mathematical notation and concepts. The discussion also highlights the dependence on context for interpreting the phrases in question.

E01
Messages
8
Reaction score
0
This may seem like a dumb question but I'm not sure whether "such that" is equivalent to "iff" or "if then".

Here is what confused me. The image of A "f(A)" is defined as y element of Y such that for some x element of A, y=f(A). I could say there exists some element x such that y=f(A).

I'm not sure if I can say in a proof that if y=f(A) then there exists some x element of A.

Sometimes it seems like A such that B means "if then".
 
Physics news on Phys.org
E01 said:
Here is what confused me. The image of A "f(A)" is defined as y element of Y such that for some x element of A, y=f(A). I could say there exists some element x such that y=f(A).
This is not a correct definition. For one, you say "x such that" and then don't mention x. Could you give a correct definition and start by saying what $f$, $A$ and $Y$ are?
 
E01 said:
This may seem like a dumb question but I'm not sure whether "such that" is equivalent to "iff" or "if then".

Here is what confused me. The image of A "f(A)" is defined as y element of Y such that for some x element of A, y=f(A). I could say there exists some element x such that y=f(A).

I'm not sure if I can say in a proof that if y=f(A) then there exists some x element of A.

Sometimes it seems like A such that B means "if then".

In my experience, "such that" usually occurs in THIS setting:

$S = \{x \in T \text{ such that } P(x)\}$

where $P$ is some property $x$ has, in other words:

$x \in S \iff (x \in T) \wedge P(x)$

For example:

$2\Bbb Z = \{k \in \Bbb Z \text{ such that } 2|k\}$

which says two things:

1. $k$ is an integer
2. $k$ is divisible by 2.

In this example, "such that" doesn't play the role of "if...then", "only if" OR "iff", it plays the role of "and".
 
Thanks for the response Deveno. That makes sense. So I would say y is an element of Y and y=f(A) for some x element of A.

In response to Evgeny.

I forgot the starting portion of the definition. Let X and Y be sets. Let f be a function from X onto Y. A is a subset of X. We define the image of A as the set f(A) where y is an element of Y such that y=f(A) for some element x element of A.

I need to learn to use LaTeX.
 
In response to what I THINK you were trying to ask:

If f(A) = Y, then yes, there is SOME x in X with f(x) = y, for any y in Y you care to choose. This is often taken as the definition of "surjective" or "onto". Such an x is called a "pre-image" for y.

If, however, f(A) is not all of Y, then we cannot say this necessarily.

Example:

The function f:{1,2} --> {1,2} defined by:

f(1) = 1
f(2) = 1

is not onto, there is no pre-image of 2.

The function f:{1,2}-->{1} defined with the same values IS onto, as there is only one element in the co-domain, 1, and it has a pre-image (actually, it has two).

Any function f:X-->Y can be made into an onto function by considering f (with the same values at every x in X):

f:A --> f(A).

This underscores something that is often overlooked with functions: the "target-set" (the co-domain) is part of the definition, and f is not determined SOLELY by its values.

If all one is concerned about is f(x) for various x's, as in calculation of maximum or minimum values, often one does not think much about this, but it can be critical.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K