Sum Infinity Express: Rational Number Solution

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Infinity Sum
Click For Summary

Discussion Overview

The discussion revolves around evaluating the double sum $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ and expressing it as a rational number. Participants explore various approaches and techniques for simplifying the expression, including the use of harmonic numbers and partial fractions.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant rewrites the sum as $S=\sum_{n=1}^{\infty} \frac{1}{n}\ \sum _{m=1}^{\infty} \frac{1}{m\ (m+n+ 2)}$ and references a previous demonstration regarding the inner sum involving harmonic numbers.
  • Another participant presents a variation of the proof, employing partial fractions and telescoping sums to arrive at the same result of $S=\frac{7}{4}$.
  • There are mentions of specific identities and formulas related to harmonic numbers, such as $H_{n+2} = H_{n} + \frac{1}{n+1} + \frac{1}{n+2}$, and the application of these in the context of the sums.
  • Participants discuss the manipulation of sums and the application of techniques like partial fractions and telescoping to simplify the evaluation of the double sum.

Areas of Agreement / Disagreement

While participants present different approaches to the problem, they arrive at the same final result of $S=\frac{7}{4}$. However, the methods used to reach this conclusion vary, indicating a lack of consensus on the preferred approach.

Contextual Notes

Some steps in the derivations rely on specific identities and properties of harmonic numbers, which may not be universally accepted or may require further justification. The discussion does not resolve all potential assumptions or dependencies on definitions related to the sums involved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Express $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ as a rational number.
 
Physics news on Phys.org
anemone said:
Express $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ as a rational number.

[sp]Writing the sum in aslight different form You have...$\displaystyle S=\sum_{n=1}^{\infty} \frac{1}{n}\ \sum _{m=1}^{\infty} \frac{1}{m\ (m+n+ 2)}\ (1)$In... http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2494... it has been demonstrated that is... $\displaystyle\sum_{m=1}^{\infty} \frac{1}{m (m+n)} = \frac{H_{n}}{n}\ (2)$... where $\displaystyle H_{n} = \sum_{k=1}^{n} \frac{1}{k}$ is the harmonic number of order n.In this case is... $\displaystyle S=\sum_{n=1}^{\infty} \frac{H_{n+2}}{n\ (n+2)}\ (3)$

Using the identity $\displaystyle H_{n+2} = H_{n} + \frac{1}{n+1} + \frac{1}{n+2}$ You arrive to write...

$\displaystyle S= \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}}\ (4)$

The first term of (4) can be found applying the general formula...

$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+a)} = \frac{1}{2\ a}\ \{2\ \zeta(2) + H_{a-1}^{2} + H_{a-1}^{(2)} \}\ (5)$

... where $\displaystyle H_{a-1}^{(2)} = \sum_{k=1}^{a-1} \frac{1}{k^{2}}$. For a=2 is...

$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} = \frac{1+\zeta(2)}{2}\ (6)$

The other terms are more comfortable...

$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} = \frac{1}{4}\ (7)$

$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}} = 1 - \frac{\zeta(2)}{2}\ (8)$

... so that the final result is $S= \frac{7}{4}$ [/sp]

Kind regards

$\chi$ $\sigma$
 
Slight variation on chisigma's proof:
[sp]$$\begin{aligned}\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \frac{1}{m^2n+mn^2+2mn} &= \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \frac1n\frac1{m(m+n+2)} \\ &= \sum_{n=1}^{\infty} \frac1{n(n+2)} \sum_{m=1}^{\infty}\Bigl(\frac1m - \frac1{m+n+2}\Bigr) \qquad\text{(partial fractions)} \\ &= \sum_{n=1}^{\infty} \frac1{n(n+2)} \sum_{m=1}^{n+2}\frac1m \qquad\text{(telescoping sum)} \\ &= \sum_{n=1}^{\infty} \frac12\Bigl(\frac1n - \frac1{n+2}\Bigr) \sum_{m=1}^{n+2}\frac1m \qquad\text{(partial fractions)} \\ &= \frac12\biggl(1 + \frac34 + \sum_{n=1}^{\infty}\frac1n\Bigl(\frac1{n+1} + \frac1{n+2}\Bigr)\biggr) \qquad\text{(partially telescoping sum)*} \\ &= \frac78 + \frac12\sum_{n=1}^{\infty}\Bigl(\frac1n - \frac1{n+1} + \frac12\Bigl(\frac1n - \frac1{n+2}\Bigr)\Bigr) \qquad\text{(partial fractions)} \\ &= \frac78 + \frac12\Bigl(1 + \frac34\Bigr) = \frac74 \qquad\text{(telescoping sums)}.\end{aligned}$$

* The idea of the "partially telescoping sum" is that the $n$th term in the sum $$\sum_{n=1}^{\infty} \Bigl(\frac1n - \frac1{n+2}\Bigr) \sum_{m=1}^{n+2}\frac1m$$ contains the product $$ \frac1n \sum_{m=1}^{n+2}\frac1m$$. Two terms earlier in the sum (assuming that $n\geqslant3$), there is the product $$-\frac1n \sum_{m=1}^{n}\frac1m$$. When those two expressions are added, most of the terms in the "$m$" summations cancel, and we are just left with $$\frac1n\Bigl(\frac1{n+1} + \frac1{n+2}\Bigr).$$[/sp]
 
Hey chisigma and Opalg,(Wave)

Thanks for participating and showing the two neat and smart solutions.

A solution that I saw somewhere online:

$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$

$= \sum_{n=1}^{\infty}\dfrac{1}{n}\sum_{m=1}^{\infty} \dfrac{1}{m(m+n+2)}$

$=\sum_{n=1}^{\infty}\dfrac{1}{n(n+2)}\left[\left(1-\dfrac{1}{n+3} \right)+\left(\dfrac{1}{2}-\dfrac{1}{n+4} \right)+\left(\dfrac{1}{3}-\dfrac{1}{n+5}+\cdots \right) \right]$

$=\sum_{n=1}^{\infty}\dfrac{1}{n(n+2)}\left[1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n+2} \right]$

$=\dfrac{1}{2}\sum_{n=1}^{\infty} \left(\dfrac{1}{n}-\dfrac{1}{n+2} \right)\left(1+\dfrac{1}{2}+\cdots+\dfrac{1}{n+2} \right)$

$=\dfrac{1}{2}\left[ \left(1-\dfrac{1}{3} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3} \right)+\left(\dfrac{1}{2} -\dfrac{1}{3} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{3} -\dfrac{1}{5} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\cdots\right]$

$=\dfrac{1}{2}\left[\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)+ \dfrac{1}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{3}\left(1+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{4}\left(1+\dfrac{1}{5}+\dfrac{1}{6}\right)+\dfrac{1}{5}\left(1+\dfrac{1}{6}+\dfrac{1}{7}\right)+\cdots\right]$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{1}{2}\cdot\dfrac{25}{12}+\left(\dfrac{1}{3(4)}+\dfrac{1}{4(5)}+\dfrac{1}{5(6)}+\cdots \right)+\left(\dfrac{1}{3(5)}+\dfrac{1}{4(6)}+\dfrac{1}{5(7)}+\cdots \right) \right]$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{25}{24}+\left(\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\cdots\right)+\dfrac{1}{2}\left(\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{4}-\dfrac{1}{6}\right)+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\cdots\right)\right]
$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{25}{24}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}\right]$

$=\dfrac{7}{4}$
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K