anemone said:
Express $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ as a rational number.
[sp]Writing the sum in aslight different form You have...$\displaystyle S=\sum_{n=1}^{\infty} \frac{1}{n}\ \sum _{m=1}^{\infty} \frac{1}{m\ (m+n+ 2)}\ (1)$In... http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2494... it has been demonstrated that is... $\displaystyle\sum_{m=1}^{\infty} \frac{1}{m (m+n)} = \frac{H_{n}}{n}\ (2)$... where $\displaystyle H_{n} = \sum_{k=1}^{n} \frac{1}{k}$ is the harmonic number of order n.In this case is... $\displaystyle S=\sum_{n=1}^{\infty} \frac{H_{n+2}}{n\ (n+2)}\ (3)$
Using the identity $\displaystyle H_{n+2} = H_{n} + \frac{1}{n+1} + \frac{1}{n+2}$ You arrive to write...
$\displaystyle S= \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}}\ (4)$
The first term of (4) can be found applying the general formula...
$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+a)} = \frac{1}{2\ a}\ \{2\ \zeta(2) + H_{a-1}^{2} + H_{a-1}^{(2)} \}\ (5)$
... where $\displaystyle H_{a-1}^{(2)} = \sum_{k=1}^{a-1} \frac{1}{k^{2}}$. For a=2 is...
$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} = \frac{1+\zeta(2)}{2}\ (6)$
The other terms are more comfortable...
$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} = \frac{1}{4}\ (7)$
$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}} = 1 - \frac{\zeta(2)}{2}\ (8)$
... so that the final result is $S= \frac{7}{4}$ [/sp]
Kind regards
$\chi$ $\sigma$