MHB Sum Infinity Express: Rational Number Solution

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Infinity Sum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Express $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ as a rational number.
 
Mathematics news on Phys.org
anemone said:
Express $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ as a rational number.

[sp]Writing the sum in aslight different form You have...$\displaystyle S=\sum_{n=1}^{\infty} \frac{1}{n}\ \sum _{m=1}^{\infty} \frac{1}{m\ (m+n+ 2)}\ (1)$In... http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2494... it has been demonstrated that is... $\displaystyle\sum_{m=1}^{\infty} \frac{1}{m (m+n)} = \frac{H_{n}}{n}\ (2)$... where $\displaystyle H_{n} = \sum_{k=1}^{n} \frac{1}{k}$ is the harmonic number of order n.In this case is... $\displaystyle S=\sum_{n=1}^{\infty} \frac{H_{n+2}}{n\ (n+2)}\ (3)$

Using the identity $\displaystyle H_{n+2} = H_{n} + \frac{1}{n+1} + \frac{1}{n+2}$ You arrive to write...

$\displaystyle S= \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}}\ (4)$

The first term of (4) can be found applying the general formula...

$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+a)} = \frac{1}{2\ a}\ \{2\ \zeta(2) + H_{a-1}^{2} + H_{a-1}^{(2)} \}\ (5)$

... where $\displaystyle H_{a-1}^{(2)} = \sum_{k=1}^{a-1} \frac{1}{k^{2}}$. For a=2 is...

$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} = \frac{1+\zeta(2)}{2}\ (6)$

The other terms are more comfortable...

$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} = \frac{1}{4}\ (7)$

$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}} = 1 - \frac{\zeta(2)}{2}\ (8)$

... so that the final result is $S= \frac{7}{4}$ [/sp]

Kind regards

$\chi$ $\sigma$
 
Slight variation on chisigma's proof:
[sp]$$\begin{aligned}\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \frac{1}{m^2n+mn^2+2mn} &= \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \frac1n\frac1{m(m+n+2)} \\ &= \sum_{n=1}^{\infty} \frac1{n(n+2)} \sum_{m=1}^{\infty}\Bigl(\frac1m - \frac1{m+n+2}\Bigr) \qquad\text{(partial fractions)} \\ &= \sum_{n=1}^{\infty} \frac1{n(n+2)} \sum_{m=1}^{n+2}\frac1m \qquad\text{(telescoping sum)} \\ &= \sum_{n=1}^{\infty} \frac12\Bigl(\frac1n - \frac1{n+2}\Bigr) \sum_{m=1}^{n+2}\frac1m \qquad\text{(partial fractions)} \\ &= \frac12\biggl(1 + \frac34 + \sum_{n=1}^{\infty}\frac1n\Bigl(\frac1{n+1} + \frac1{n+2}\Bigr)\biggr) \qquad\text{(partially telescoping sum)*} \\ &= \frac78 + \frac12\sum_{n=1}^{\infty}\Bigl(\frac1n - \frac1{n+1} + \frac12\Bigl(\frac1n - \frac1{n+2}\Bigr)\Bigr) \qquad\text{(partial fractions)} \\ &= \frac78 + \frac12\Bigl(1 + \frac34\Bigr) = \frac74 \qquad\text{(telescoping sums)}.\end{aligned}$$

* The idea of the "partially telescoping sum" is that the $n$th term in the sum $$\sum_{n=1}^{\infty} \Bigl(\frac1n - \frac1{n+2}\Bigr) \sum_{m=1}^{n+2}\frac1m$$ contains the product $$ \frac1n \sum_{m=1}^{n+2}\frac1m$$. Two terms earlier in the sum (assuming that $n\geqslant3$), there is the product $$-\frac1n \sum_{m=1}^{n}\frac1m$$. When those two expressions are added, most of the terms in the "$m$" summations cancel, and we are just left with $$\frac1n\Bigl(\frac1{n+1} + \frac1{n+2}\Bigr).$$[/sp]
 
Hey chisigma and Opalg,(Wave)

Thanks for participating and showing the two neat and smart solutions.

A solution that I saw somewhere online:

$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$

$= \sum_{n=1}^{\infty}\dfrac{1}{n}\sum_{m=1}^{\infty} \dfrac{1}{m(m+n+2)}$

$=\sum_{n=1}^{\infty}\dfrac{1}{n(n+2)}\left[\left(1-\dfrac{1}{n+3} \right)+\left(\dfrac{1}{2}-\dfrac{1}{n+4} \right)+\left(\dfrac{1}{3}-\dfrac{1}{n+5}+\cdots \right) \right]$

$=\sum_{n=1}^{\infty}\dfrac{1}{n(n+2)}\left[1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n+2} \right]$

$=\dfrac{1}{2}\sum_{n=1}^{\infty} \left(\dfrac{1}{n}-\dfrac{1}{n+2} \right)\left(1+\dfrac{1}{2}+\cdots+\dfrac{1}{n+2} \right)$

$=\dfrac{1}{2}\left[ \left(1-\dfrac{1}{3} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3} \right)+\left(\dfrac{1}{2} -\dfrac{1}{3} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{3} -\dfrac{1}{5} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\cdots\right]$

$=\dfrac{1}{2}\left[\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)+ \dfrac{1}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{3}\left(1+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{4}\left(1+\dfrac{1}{5}+\dfrac{1}{6}\right)+\dfrac{1}{5}\left(1+\dfrac{1}{6}+\dfrac{1}{7}\right)+\cdots\right]$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{1}{2}\cdot\dfrac{25}{12}+\left(\dfrac{1}{3(4)}+\dfrac{1}{4(5)}+\dfrac{1}{5(6)}+\cdots \right)+\left(\dfrac{1}{3(5)}+\dfrac{1}{4(6)}+\dfrac{1}{5(7)}+\cdots \right) \right]$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{25}{24}+\left(\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\cdots\right)+\dfrac{1}{2}\left(\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{4}-\dfrac{1}{6}\right)+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\cdots\right)\right]
$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{25}{24}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}\right]$

$=\dfrac{7}{4}$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top