MHB Sum of 2 Primes: 45 - (2 Digit Integer)?

  • Thread starter Thread starter Ilikebugs
  • Start date Start date
  • Tags Tags
    Primes Sum
AI Thread Summary
To solve the problem of finding the sum of two primes that results in a two-digit odd integer, the discussion focuses on subtracting the count of such integers from 45. It is established that the sum of two primes must include the prime number 2 to yield an odd result, leading to the examination of the primality of n-2 for odd integers n. The conclusion reached is that there are 21 odd two-digit numbers where n-2 is prime, resulting in a final answer of 24. The conversation highlights the importance of correctly identifying prime numbers in this context. The analysis confirms that about half of the odd two-digit numbers cannot be expressed as a sum of two primes.
Ilikebugs
Messages
94
Reaction score
0
View attachment 6519 I think that we have to get all 2 digit odd numbers that can be expressed as the sum of 2 primes and subtract that from 45, so I think that the answer would be 45-(number of 2 digit integers n that are prime and have n-2 be prime as well)?
 

Attachments

  • potw 5.png
    potw 5.png
    41.7 KB · Views: 118
Mathematics news on Phys.org
Ilikebugs said:
I think that we have to get all 2 digit odd numbers that can be expressed as the sum of 2 primes and subtract that from 45, so I think that the answer would be 45-(number of 2 digit integers n that are prime and have n-2 be prime as well)?

$n$ doesn't have to be prime.
 
The question seems interesting. The answer is $24$. That is, about half of the odd 2-didit numbers cannot be expressed as a sum of two primes. The proof is simple. The sum if two primes must contain $2$, for otherwise the number cannot be odd. Thus, we have just check the primality of $n-2$ , where $n$ is any odd number.
 
Last edited:
Arent there 21 odd 2 digit numbers where n-2 is prime, so its 24?
 
Ilikebugs said:
Arent there 21 odd 2 digit numbers where n-2 is prime, so its 24?

True, I missed one. Corrected though
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top