Sum of binomial coefficients multiplied by k^2

Click For Summary
SUMMARY

The evaluation of the sum of binomial coefficients multiplied by \( k^2 \) for \( n = 12 \) results in 159744. The formula derived for this computation is \( \sum_{k=0}^{n}\left({n \choose k}k^2\right) = n(n+1)2^{n-2} \). This formula is established through the application of the binomial theorem and differentiation techniques. The discussion emphasizes the importance of using binomial identities and differentiation to derive the necessary formulas for such sums.

PREREQUISITES
  • Understanding of binomial coefficients, specifically \( {n \choose k} \)
  • Familiarity with the binomial theorem and its applications
  • Knowledge of differentiation techniques in calculus
  • Ability to manipulate algebraic expressions involving sums
NEXT STEPS
  • Study the derivation of the binomial theorem and its implications in combinatorics
  • Learn about the application of differentiation in evaluating sums
  • Explore advanced combinatorial identities and their proofs
  • Investigate the use of generating functions in combinatorial mathematics
USEFUL FOR

Mathematicians, students studying combinatorics, educators teaching calculus and algebra, and anyone interested in advanced mathematical identities and their applications.

alexmahone
Messages
303
Reaction score
0
Evaluate [math]\sum\limits_{k=1}^{12} {12\choose{k}}k^2[/math]

The answer is 159744.
 
Last edited:
Physics news on Phys.org
I would begin with:

$$x^2\left(1+x^2\right)^n=\sum_{k=0}^n\left({n \choose k}\left(x^2\right)^{k+1}\right)$$

And then differentiating twice with respect to $x$, you should get the general formula you need. :)
 
Suppose we wish to find a formula for:

$$\sum_{k=0}^n\left({n \choose k}k\right)$$

We could begin with the binomial theorem and state:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k\right)$$

Multiply through by $x$:

$$x(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^{k+1}\right)$$

Differentiate w.r.t $x$:

$$x\left(n(1+x)^{n-1}\right)+(1)(1+x)^n=\sum_{k=0}^n\left({n \choose k}(k+1)x^{k}\right)$$

Letting $x=1$, we obtain:

$$n2^{n-1}+2^n=\sum_{k=0}^n\left({n \choose k}(k+1)\right)=\sum_{k=0}^n\left({n \choose k}k\right)+\sum_{k=0}^n\left({n \choose k}\right)$$

We should observe that $$\sum_{k=0}^n\left({n \choose k}\right)=(1+1)^n=2^n$$

And so we have:

$$n2^{n-1}+2^n=\sum_{k=0}^n\left({n \choose k}k\right)+2^n$$

Hence:

$$\sum_{k=0}^n\left({n \choose k}k\right)=n2^{n-1}\tag{1}$$

Now, use a similar approach to find a formula for:

$$\sum_{k=0}^n\left({n \choose k}k^2\right)$$

And you will find you can use the formula (1) I derived above.
 
MarkFL said:
Suppose we wish to find a formula for:

$$\sum_{k=0}^n\left({n \choose k}k\right)$$

We could begin with the binomial theorem and state:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k\right)$$

Multiply through by $x$:

$$x(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^{k+1}\right)$$

Differentiate w.r.t $x$:

$$x\left(n(1+x)^{n-1}\right)+(1)(1+x)^n=\sum_{k=0}^n\left({n \choose k}(k+1)x^{k}\right)$$

Letting $x=1$, we obtain:

$$n2^{n-1}+2^n=\sum_{k=0}^n\left({n \choose k}(k+1)\right)=\sum_{k=0}^n\left({n \choose k}k\right)+\sum_{k=0}^n\left({n \choose k}\right)$$

We should observe that $$\sum_{k=0}^n\left({n \choose k}\right)=(1+1)^n=2^n$$

And so we have:

$$n2^{n-1}+2^n=\sum_{k=0}^n\left({n \choose k}k\right)+2^n$$

Hence:

$$\sum_{k=0}^n\left({n \choose k}k\right)=n2^{n-1}\tag{1}$$

Now, use a similar approach to find a formula for:

$$\sum_{k=0}^n\left({n \choose k}k^2\right)$$

And you will find you can use the formula (1) I derived above.

In order to find a formula for:

$$\sum_{k=0}^n\left({n \choose k}k\right)$$,

we just need to differentiate (w.r.t. x)

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k\right)$$ once and set [math]x=1[/math].
 
Alexmahone said:
In order to find a formula for:

$$\sum_{k=0}^n\left({n \choose k}k\right)$$,

we just need to differentiate (w.r.t. x)

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k\right)$$ once and set [math]x=1[/math].

Yes, that works too and is simpler. Likewise, to find the formula you need, we could take:

$$\left(1+x\right)^n=\sum_{k=0}^n\left({n \choose k}x^{k}\right)$$

And differentiate twice, and let $x=1$ and (1) to get the result. What do you find?
 
We begin with:

$$\left(1+x\right)^n=\sum_{k=0}^n\left({n \choose k}x^{k}\right)$$

Differentiating twice w.r.t $x$, there results:

$$n(n-1)\left(1+x\right)^{n-2}=\sum_{k=0}^n\left({n \choose k}k(k-1)x^{k-2}\right)$$

Letting $x=1$, we have:

$$n(n-1)2^{n-2}=\sum_{k=0}^n\left({n \choose k}k^2\right)-\sum_{k=0}^n\left({n \choose k}k\right)$$

Using our previous result:

$$n(n-1)2^{n-2}=\sum_{k=0}^n\left({n \choose k}k^2\right)-n2^{n-1}$$

$$\sum_{k=0}^n\left({n \choose k}k^2\right)=n(n-1)2^{n-2}+n2^{n-1}$$

$$\sum_{k=0}^n\left({n \choose k}k^2\right)=n2^{n-2}\left((n-1)+2\right)$$

$$\sum_{k=0}^n\left({n \choose k}k^2\right)=n(n+1)2^{n-2}$$

And so, we may now write:

$$\sum_{k=0}^{12}\left({12 \choose k}k^2\right)=12(12+1)2^{12-2}=156\cdot1024=159744$$
 
Hello,

Here is an alternative to the calculus method displayed here. First write

$$\sum_{k = 1}^n \binom{n}{k}k^2 = n\sum_{k = 1}^n \binom{n-1}{k-1}k.\tag{*}$$

This holds due to the binomial identity

$$\binom{m}{r} = \frac{m}{r}\binom{m-1}{r-1}.$$

Using this binomial identity once more we obtain

$$\sum_{k = 1}^n \binom{n-1}{k-1}k = \sum_{k = 1}^n \binom{n-1}{k-1}(k-1) + \sum_{k = 1}^n \binom{n-1}{k-1}= (n-1)\sum_{k = 2}^{n} \binom{n-2}{k-2} + \sum_{k = 1}^n \binom{n-1}{k-1}.$$

By the binomial theorem,

$$\sum_{k = 2}^n \binom{n-2}{k-2} = \sum_{k = 0}^{n-2} \binom{n-2}{k} = (1 + 1)^{n-2} = 2^{n-2},$$

and

$$\sum_{k = 1}^n \binom{n-1}{k-1} = \sum_{k = 0}^{n-1} \binom{n-1}{k} = (1 + 1)^{n-1} = 2^{n-1}.$$

Hence

$$\sum_{k = 1}^n \binom{n-1}{k-1}k = (n-1)2^{n-2} + 2^{n-1},$$

and finally by (*),

$$\sum_{k = 1}^n \binom{n}{k}k^2 = n(n-1)2^{n-2} + n2^{n-1} = n[(n-1) + 2]2^{n-2} = n(n+1)2^{n-2}.$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K