alexmahone
- 303
- 0
Evaluate [math]\sum\limits_{k=1}^{12} {12\choose{k}}k^2[/math]
The answer is 159744.
The answer is 159744.
Last edited:
MarkFL said:Suppose we wish to find a formula for:
$$\sum_{k=0}^n\left({n \choose k}k\right)$$
We could begin with the binomial theorem and state:
$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k\right)$$
Multiply through by $x$:
$$x(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^{k+1}\right)$$
Differentiate w.r.t $x$:
$$x\left(n(1+x)^{n-1}\right)+(1)(1+x)^n=\sum_{k=0}^n\left({n \choose k}(k+1)x^{k}\right)$$
Letting $x=1$, we obtain:
$$n2^{n-1}+2^n=\sum_{k=0}^n\left({n \choose k}(k+1)\right)=\sum_{k=0}^n\left({n \choose k}k\right)+\sum_{k=0}^n\left({n \choose k}\right)$$
We should observe that $$\sum_{k=0}^n\left({n \choose k}\right)=(1+1)^n=2^n$$
And so we have:
$$n2^{n-1}+2^n=\sum_{k=0}^n\left({n \choose k}k\right)+2^n$$
Hence:
$$\sum_{k=0}^n\left({n \choose k}k\right)=n2^{n-1}\tag{1}$$
Now, use a similar approach to find a formula for:
$$\sum_{k=0}^n\left({n \choose k}k^2\right)$$
And you will find you can use the formula (1) I derived above.
Alexmahone said:In order to find a formula for:
$$\sum_{k=0}^n\left({n \choose k}k\right)$$,
we just need to differentiate (w.r.t. x)
$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k\right)$$ once and set [math]x=1[/math].