Sum of Infinite Series: cot^-1(5/sqrt(3))+cot^-1(9/sqrt(3))+...

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Series Summation
Click For Summary

Discussion Overview

The discussion revolves around the sum of an infinite series involving the inverse cotangent function, specifically the series: $$\cot^{-1}\left(\frac{5}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{9}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{15}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{23}{\sqrt{3}}\right)+\cdots$$ Participants are exploring the convergence and potential methods for summing this series.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant presents the series and seeks its sum, indicating an interest in infinite series involving inverse functions.
  • Another participant expresses interest in a proof related to the series, suggesting a collaborative exploration of the topic.
  • There is a suggestion to open a dedicated math note for discussing series of inverse functions, indicating a desire for deeper exploration of related concepts.

Areas of Agreement / Disagreement

Participants appear to agree on the correctness of the initial series presented, but the discussion remains open-ended regarding the proof and methods for summing the series.

Contextual Notes

The discussion does not resolve the mathematical steps necessary to sum the series, and assumptions regarding convergence or specific methods are not explicitly stated.

Saitama
Messages
4,244
Reaction score
93
Find the sum of the following series upto infinite terms:

$$\cot^{-1}\left(\frac{5}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{9}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{15}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{23}{\sqrt{3}}\right)+\cdots$$
 
Physics news on Phys.org
Pranav said:
Find the sum of the following series upto infinite terms:

$$\cot^{-1}\left(\frac{5}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{9}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{15}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{23}{\sqrt{3}}\right)+\cdots$$

Since I'm more familiar with the function $\displaystyle \tan^{-1} x$ let me write the series as...

$\displaystyle S = \sum_{n=1}^{\infty} \tan^{-1} \frac{\sqrt{3}}{n^{2} + n + 3}\ (1)$

We can use the general formula...

$\displaystyle \sum_{n=1}^{\infty} \tan^{-1} \frac{c}{n^{2} + n + c^{2}} = \tan^{- 1} c\ (2)$

... obtaining...

$\displaystyle S = \tan^{-1} \sqrt{3} = \frac{\pi}{3}\ (3)$ The prove of (2) will be supplied in a successive post...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Since I'm more familiar with the function $\displaystyle \tan^{-1} x$ let me write the series as...

$\displaystyle S = \sum_{n=1}^{\infty} \tan^{-1} \frac{\sqrt{3}}{n^{2} + n + 3}\ (1)$

We can use the general formula...

$\displaystyle \sum_{n=1}^{\infty} \tan^{-1} \frac{c}{n^{2} + n + c^{2}} = \tan^{- 1} c\ (2)$

... obtaining...

$\displaystyle S = \tan^{-1} \sqrt{3} = \frac{\pi}{3}\ (3)$ The prove of (2) will be supplied in a successive post...

Kind regards

$\chi$ $\sigma$

Hi chisigma!

Thanks for participating, your answer is correct! I am interested in your proof for (2). :)
 
Pranav said:
Hi chisigma!

Thanks for participating, your answer is correct! I am interested in your proof for (2). :)

May be that the best for me is to open a math note dedicated to the series of inverse functions...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
May be that the best for me is to open a math note dedicated to the series of inverse functions...

Kind regards

$\chi$ $\sigma$

Definitely! (Yes)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K