Sum of Infinite Series: cot^-1(5/sqrt(3))+cot^-1(9/sqrt(3))+...

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Series Summation
Click For Summary
SUMMARY

The infinite series sum of cotangent inverse functions is expressed as cot-1(5/√3) + cot-1(9/√3) + cot-1(15/√3) + cot-1(23/√3) + ... This series converges, and the correct approach to find its sum involves recognizing the pattern in the terms and applying properties of inverse trigonometric functions. The discussion emphasizes the importance of proof and mathematical notation in understanding such series.

PREREQUISITES
  • Understanding of inverse trigonometric functions, specifically cotangent.
  • Familiarity with series convergence and summation techniques.
  • Basic knowledge of mathematical notation and proof techniques.
  • Experience with mathematical analysis concepts.
NEXT STEPS
  • Study the properties of inverse trigonometric functions, focusing on cotangent.
  • Learn about series convergence tests and their applications.
  • Explore mathematical proof techniques for series summation.
  • Investigate related series involving inverse functions and their sums.
USEFUL FOR

Mathematicians, students studying calculus or mathematical analysis, and anyone interested in series and inverse functions will benefit from this discussion.

Saitama
Messages
4,244
Reaction score
93
Find the sum of the following series upto infinite terms:

$$\cot^{-1}\left(\frac{5}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{9}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{15}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{23}{\sqrt{3}}\right)+\cdots$$
 
Physics news on Phys.org
Pranav said:
Find the sum of the following series upto infinite terms:

$$\cot^{-1}\left(\frac{5}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{9}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{15}{\sqrt{3}}\right)+\cot^{-1}\left(\frac{23}{\sqrt{3}}\right)+\cdots$$

Since I'm more familiar with the function $\displaystyle \tan^{-1} x$ let me write the series as...

$\displaystyle S = \sum_{n=1}^{\infty} \tan^{-1} \frac{\sqrt{3}}{n^{2} + n + 3}\ (1)$

We can use the general formula...

$\displaystyle \sum_{n=1}^{\infty} \tan^{-1} \frac{c}{n^{2} + n + c^{2}} = \tan^{- 1} c\ (2)$

... obtaining...

$\displaystyle S = \tan^{-1} \sqrt{3} = \frac{\pi}{3}\ (3)$ The prove of (2) will be supplied in a successive post...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Since I'm more familiar with the function $\displaystyle \tan^{-1} x$ let me write the series as...

$\displaystyle S = \sum_{n=1}^{\infty} \tan^{-1} \frac{\sqrt{3}}{n^{2} + n + 3}\ (1)$

We can use the general formula...

$\displaystyle \sum_{n=1}^{\infty} \tan^{-1} \frac{c}{n^{2} + n + c^{2}} = \tan^{- 1} c\ (2)$

... obtaining...

$\displaystyle S = \tan^{-1} \sqrt{3} = \frac{\pi}{3}\ (3)$ The prove of (2) will be supplied in a successive post...

Kind regards

$\chi$ $\sigma$

Hi chisigma!

Thanks for participating, your answer is correct! I am interested in your proof for (2). :)
 
Pranav said:
Hi chisigma!

Thanks for participating, your answer is correct! I am interested in your proof for (2). :)

May be that the best for me is to open a math note dedicated to the series of inverse functions...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
May be that the best for me is to open a math note dedicated to the series of inverse functions...

Kind regards

$\chi$ $\sigma$

Definitely! (Yes)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K