MHB Sum of Sequence $(a_{n+1}+3)(2-a_n)=6$ to 100

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence Sum
Click For Summary
The sequence defined by the equation $(a_{n+1}+3)(2-a_n)=6$ leads to a linear recurrence relation for $x_n = \frac{1}{a_n}$, specifically $x_{n+1} = \frac{1}{3}(2x_n - 1)$ with $x_1 = 1$. The general solution for $x_n$ is $x_n = 2\left(\frac{2}{3}\right)^{n-1} - 1$. The sum $\sum_{n=1}^{100} x_n$ can be calculated as $6\left(1 - \left(\frac{2}{3}\right)^{100}\right) - 100$. The approximate value of this sum is around -94, accurate to about 17 decimal places.
Albert1
Messages
1,221
Reaction score
0
given :$(a_{n+1}+3)(2-a_n)=6$
$(a_n\neq 0, a_1=1)$
please find :$\sum_{n=1}^{100} \dfrac {1}{a_n}$
 
Last edited:
Mathematics news on Phys.org
Albert said:
given :$(a_{n+1}+3)(2-a_n)=6$
$(a_n\neq 0, a_1=1)$
please find :$\sum_{n=1}^{100} \dfrac {1}{a_n}$
[sp]If $(a_{n+1}+3)(2-a_n)=6$ then $2a_{n+1} - 3a_n - a_{n+1}a_n = 0$ and so $$\frac2{a_n} - \frac3{a_{n+1}} = 1.$$

Let $x_n = \dfrac1{a_n}$. Then $x_{n+1} = \frac13(2x_n - 1)$, with $x_1 = 1$. That is a linear recurrence relation, with solution $x_n = 2\bigl(\frac23\bigr)^{\!n-1} - 1$. Therefore $$\sum_{n=1}^{100}x_n = \sum_{n=1}^{100} \Bigl( 2\bigl(\tfrac23\bigr)^{\!n-1} - 1 \Bigr) = \frac{2\Bigl( 1 - \bigl(\frac23\bigr)^{\!100} \Bigr)}{1-\frac23} - 100 = 6\Bigl(1 - \bigl(\tfrac23\bigr)^{\!100} \Bigr) - 100.$$

The approximate solution $$\sum_{n=1}^{100}x_n \approx -94$$ is correct to about 17 decimal places.[/sp]
 
Opalg said:
[sp]If $(a_{n+1}+3)(2-a_n)=6$ then $2a_{n+1} - 3a_n - a_{n+1}a_n = 0$ and so $$\frac2{a_n} - \frac3{a_{n+1}} = 1.$$Let $x_n = \dfrac1{a_n}$. Then $x_{n+1} = \frac13(2x_n - 1)$, with $x_1 = 1$. That is a linear recurrence relation, with solution $x_n = 2\bigl(\frac23\bigr)^{\!n-1} - 1$. Therefore $$\sum_{n=1}^{100}x_n = \sum_{n=1}^{100} \Bigl( 2\bigl(\tfrac23\bigr)^{\!n-1} - 1 \Bigr) = \frac{2\Bigl( 1 - \bigl(\frac23\bigr)^{\!100} \Bigr)}{1-\frac23} - 100 = 6\Bigl(1 - \bigl(\tfrac23\bigr)^{\!100} \Bigr) - 100.$$The approximate solution $$\sum_{n=1}^{100}x_n \approx -94$$ is correct to about 17 decimal places.[/sp]
perfect!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K