MHB Sum of squares of average change is less than

Click For Summary
The discussion focuses on proving that for differentiable functions f and g on the interval [a, b], there exists an x in (a, b) such that the sum of the squares of their average changes is less than or equal to the sum of the squares of their derivatives at that point. A suggested approach involves defining a path in two-dimensional space using the functions and comparing the distance between endpoints to the integral of the derivatives. The relationship between the average change and the integral of the derivatives is established, leading to the conclusion that the average change is bounded by the maximum value of the derivatives over the interval. This proof strategy appears to be on the right track.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Hello MHB,

I have no good ideas on how to go about solving the following:

Let $f:[a,b]\to\mathbb R$ and $g:[a,b]\to\mathbb R$ be real values functions both of which are differentiable in $(a,b)$. Show that there is an $x\in(a,b)$ such that $$\left(\frac{f(b)-f(a)}{b-a}\right)^2+\left(\frac{g(b)-g(a)}{b-a}\right)^2\leq (f'(x))^2+(g'(x))^2$$

Please help.
 
Physics news on Phys.org
Re: Sum of squares of average change is less than ...

caffeinemachine said:
Hello MHB,

I have no good ideas on how to go about solving the following:

Let $f:[a,b]\to\mathbb R$ and $g:[a,b]\to\mathbb R$ be real values functions both of which are differentiable in $(a,b)$. Show that there is an $x\in(a,b)$ such that $$\left(\frac{f(b)-f(a)}{b-a}\right)^2+\left(\frac{g(b)-g(a)}{b-a}\right)^2\leq (f'(x))^2+(g'(x))^2$$

Please help.
Here's an idea to get you started. Define a path in 2-dimensional space by the function $h:[a,b] \to \mathbb{R}^2$ given by $h(t) = \bigl(f(t),g(t)\bigr)\ (a\leqslant t\leqslant b).$ Then the distance between the endpoints is less than (or equal to) the length of the path.
 
Re: Sum of squares of average change is less than ...

Opalg said:
Here's an idea to get you started. Define a path in 2-dimensional space by the function $h:[a,b] \to \mathbb{R}^2$ given by $h(t) = \bigl(f(t),g(t)\bigr)\ (a\leqslant t\leqslant b).$ Then the distance between the endpoints is less than (or equal to) the length of the path.
Opalg said:
Here's an idea to get you started. Define a path in 2-dimensional space by the function $h:[a,b] \to \mathbb{R}^2$ given by $h(t) = \bigl(f(t),g(t)\bigr)\ (a\leqslant t\leqslant b).$ Then the distance between the endpoints is less than (or equal to) the length of the path.
So the above says that:

$\sqrt{(f(b)-f(a))^2+(g(b)-g(a))^2}\leq \displaystyle\int_a^b\left[\sqrt{(f'(x))^2+(g'(x))^2}\right]dx$. Now we use the fact that if $h:[a,b]\to\mathbb R$ is a continuous function then $\int_a^bh(x)dx\leq h(x_0)(b-a)$ for some $x_0\in (a,b)$.

Is this correct?
 
Re: Sum of squares of average change is less than ...

caffeinemachine said:
So the above says that:

$\sqrt{(f(b)-f(a))^2+(g(b)-g(a))^2}\leq \displaystyle\int_a^b\left[\sqrt{(f'(x))^2+(g'(x))^2}\right]dx$. Now we use the fact that if $h:[a,b]\to\mathbb R$ is a continuous function then $\int_a^bh(x)dx\leq h(x_0)(b-a)$ for some $x_0\in (a,b)$.

Is this correct?
That's exactly what I was thinking of. (Nod)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K