- #1
- 29
- 0
i was looking for a counter example.
and, I've not been able to think of any.
and, I've not been able to think of any.
i did not understand the geometric bit.
well i considered the principal ideals <2> and <3>
their union includes 1 which is a unit in Z, so the ideal of the sum is nothing but Z itself right ?
and that can't be prime by definition ? (since an ideal P is prime => P /= R (the ring in consideration))
more hints please.
Think of rings like R[x, y]. Algebraic curves (like the parabola y - x^2 = 0) correspond to ideals (like the ideal <y - x^2>). Sums of ideals relate to intersections of curves. Can you work out why? Do you see how a non-prime ideal corresponds, in some sense, into a curve that is the union of two or more other curves?i did not understand the geometric bit.