MHB Sums of arithmetic progressions

  • Thread starter Thread starter doreent0722
  • Start date Start date
  • Tags Tags
    Arithmetic Sums
AI Thread Summary
The discussion focuses on solving two mathematical problems involving arithmetic progressions. The first problem requires finding the fourth term of the sequence of partial sums for the sequence defined by the formula {5 + (3/2)n}. The second problem involves calculating the total distance a bicycle rider travels downhill, starting at 7 feet in the first second and increasing by 6 feet each second over 9 seconds. Participants are encouraged to share their attempts at solving these problems to facilitate better assistance. The thread emphasizes the importance of clear titles and limiting the number of questions in initial posts.
doreent0722
Messages
8
Reaction score
0
1). Find the fourth term of the sequence of partial sums for the given sequence.
{5+ 3\2 n}

2). A bicycle rider coasts downhill, traveling 7 feet the first second. In each succeeding second, the rider travels 6 feet farther than in the preceding second. If the rider reaches the bottom of the hill in 9 seconds, find the total distance traveled.

S=________ feet
 
Mathematics news on Phys.org
We ask that you post no more than two questions in the initial post of a thread. I have split your latest 4 questions into two threads.

We also ask that you give your thread a title that briefly describes the questions being asked. I have retitled your threads.

And we also ask that when you post questions, you show what you have tried, so we know where you are stuck. Can you show what you've tried for these problems?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top