MHB Sums of independent random variables

Click For Summary
The discussion focuses on finding the probability distribution of the sum of independent random variables, specifically the sum of exponential random variables influenced by a geometrically distributed count. The moment generating function (MGF) for the sum, derived from the individual MGFs, is correctly identified but needs transformation to reflect a known distribution. The final MGF indicates that the distribution of the sum is exponential with parameter (1-p)λ, contradicting the initial claim of a geometric distribution. Additionally, the need for moments like expected value or variance is clarified, emphasizing that MGFs or probability generating functions are sufficient for characterizing the distribution.
Jason4
Messages
27
Reaction score
0
I have:

$Z=X_1+\ldots+X_N$, where:

$X_i\sim_{iid}\,\text{Exponential}(\lambda)$

$N\sim\,\text{Geometric}_1(p)$

For all $i,\,N$ and $X_i$ are independent.

I need to find the probability distribution of $Z$:

$G_N(t)=\frac{(1-p)t}{1-pt}$

$M_X(t)=\frac{\lambda}{\lambda-t}$

$M_Z(z)=G_N(M_X(z))=\frac{(1-p)\left(\frac{\lambda}{\lambda-z}\right)}{1-p\left(\frac{ \lambda}{\lambda-z}\right)}$

$\Rightarrow Z\sim\,\text{Geometric}_1\left(p \frac{ \lambda}{\lambda-z}\right)$

Is that even correct? Should I be looking for $E[Z]$ and $V[Z]$ ?
 
Physics news on Phys.org
Hello,

Try to think about it. You're summing exponential rv's, which are continuous. Thus your final distribution should be continuous. So it can't be a geometric distribution. Your mgf is indeed correct, but you need to transform it in order to get a known mgf.

In particular, we have :
$M_Z(z)=\frac{(1-p)\left(\tfrac{\lambda}{\lambda-z}\right)}{1-p\left(\tfrac{\lambda}{\lambda-z}\right)}=\frac{(1-p)\lambda}{(1-p)\lambda-z}$
which is the MGF of an exponential distribution with parameter $(1-p)\lambda$And when you're asked for the distribution of a rv, there's no need of the moments (unless it's a normal distribution), because it doesn't characterize the distribution. A MGF or a PGF are functions that determine the distribution of a rv, so they're fully sufficient.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K