The Captain
- 21
- 0
Homework Statement
Given A and B are sets of numbers, A \neq \left\{ \right\}, B is bounded above, and A \subseteq B.
Explain why sup(A) and sup(B) exist and why sup(A) \leq sup(B).
Homework Equations
\exists r \in \mathbb R \: : \: r \geq a \: \forall a \in A
\exists r \in \mathbb R \: : \: A \subset \left[ - \infty , r \right]
The Attempt at a Solution
If k \in B: k \geq s, \: \forall s \in S. Then k = sup(B).
Last edited: