No. The quote above have several errors. First, the phrase "set A , whose all the unbounded sets" does not make sense because one can't say, for some set B, "whose" set B is. For example, the phrase "John, whose all unmarried sons" makes sense because, given person Bill, we can say whose son Bill is and whether he is a son of John. However, I don't know when some set B is a set of some other set A. You probably mean "A, whose all the unbounded elements" or possible "A, whose all the unbounded subsets," because the relations "an element of" and "a subset of," just like "a son of," are well-defined. But the elements of A are numbers, not sets. Indeed, in the definition of UB(A) (i.e., upper bounds of A), x is compared using <=. Only numbers, not sets, can be compared using <=. Further, note that UB(A) does not consist of elements of A but of numbers that exceed all elements of A, i.e., the upper bounds of A.
Second, the definition does not say that "all the unbounded sets [rather, elements] ($ \mathcal{UB}(A) $) are non empty," but that the set UB(A) itself is nonempty. The definition cannot refer to "supremum" because this is a definition of supremum. Finally, again, t <= x cannot mean that the minimum of x is t because <= is defined only for numbers, not sets.
I recommend you start by understanding why UB(A) is the set of upper bounds of A.