- #1
i_hate_math
- 150
- 2
Claim: Let A be a non-empty subset of R+ = {x ∈ R : x > 0} which is bounded above, and let B = {x2 : x ∈ A}. Then sup(B) = sup(A)2.
a. Prove the claim.
b. Does the claim still hold if we replace R+ with R? Explain briefly.
So I have spent the past hours trying to prove this claim using the theorem:
a = sup(A) ⇔ ∀ ε>0 (( ∀ x∈A x ≤ a + ε )∧( ∃ x∈A x > a - ε ))
I aim to prove true for: ∀ ε>0 (( ∀ x∈A x2 ≤ a2 + ε )∧( ∃ x∈A x2 > a2 - ε )), which is equivalent to proving ∀ ε>0 (( ∀ x∈B x ≤ b + ε )∧( ∃ x∈B x > b - ε )), given how set B is related to A.
As for the proof:
Firstly, it is given that A is bounded above, this means sup(A) exists.
Letting a = sup(A) gives: ∀ ε>0 (( ∀ x∈A x ≤ a + ε )∧( ∃ x∈A x > a - ε )) statement 1
I was able to use the definition of supremum to get a≥x and since a,x>0 , a2≥x2. With this result, it is easy to get the first part of the definition for B: ∀ ε>0 ( ∀ x∈A x2 ≤ a2 + ε ).
But the this result is not as helpful when proving the second part (namely, ∀ ε>0 ( ∃ x∈A x > a - ε )), neither is statement 1 (tried squaring both sides and messing with the inequalities but didn't work).
What I really need to prove is just there exist an x such that x2 > a - ε, this seems almost to be the definition of supremum. I took a further step, attempting to prove by cases with case 1 being a∈A, this gives the desired result easily; case 2 is a∉A, again, the difficulties arise.
Please help.
a. Prove the claim.
b. Does the claim still hold if we replace R+ with R? Explain briefly.
So I have spent the past hours trying to prove this claim using the theorem:
a = sup(A) ⇔ ∀ ε>0 (( ∀ x∈A x ≤ a + ε )∧( ∃ x∈A x > a - ε ))
I aim to prove true for: ∀ ε>0 (( ∀ x∈A x2 ≤ a2 + ε )∧( ∃ x∈A x2 > a2 - ε )), which is equivalent to proving ∀ ε>0 (( ∀ x∈B x ≤ b + ε )∧( ∃ x∈B x > b - ε )), given how set B is related to A.
As for the proof:
Firstly, it is given that A is bounded above, this means sup(A) exists.
Letting a = sup(A) gives: ∀ ε>0 (( ∀ x∈A x ≤ a + ε )∧( ∃ x∈A x > a - ε )) statement 1
I was able to use the definition of supremum to get a≥x and since a,x>0 , a2≥x2. With this result, it is easy to get the first part of the definition for B: ∀ ε>0 ( ∀ x∈A x2 ≤ a2 + ε ).
But the this result is not as helpful when proving the second part (namely, ∀ ε>0 ( ∃ x∈A x > a - ε )), neither is statement 1 (tried squaring both sides and messing with the inequalities but didn't work).
What I really need to prove is just there exist an x such that x2 > a - ε, this seems almost to be the definition of supremum. I took a further step, attempting to prove by cases with case 1 being a∈A, this gives the desired result easily; case 2 is a∉A, again, the difficulties arise.
Please help.
Last edited: