MHB Surjectivity of x²+3 for Real Numbers: Testing for Surjectivity

markosheehan
Messages
133
Reaction score
0
is the function x²+3 surjective for real numbers. how do you test for surjectivity in general?
 
Mathematics news on Phys.org
markosheehan said:
is the function x²+3 surjective for real numbers. how do you test for surjectivity in general?

Hi markosheehan,

Welcome to MHB! :)

Let's say a function $f$ maps some $X \in \mathbb{R}$ to $Y \in \mathbb{R}$. You might write that like $f: X \rightarrow Y|X,Y \in \mathbb{R}$ or maybe just $f:R \rightarrow R$. $f$ is surjective if every element in $Y$ is mapped to by at least one input in $X$. If $Y$ is the output of the function, we need to hit every value in $Y$ in order for $f$ to be surjective.

In this example we have $f(x)=x^2+3$. If $Y$ is all real numbers, can we output to all real numbers? Are there any numbers that we cannot map to?

In general the process of proving a function is subjective when going from $R \rightarrow R$ is to take some random $y \in Y$ and solve for it in terms of $x$. Is that possible here? What happens when you try to solve for $y$?
 
Jameson said:
Let's say a function $f$ maps some $X \in \mathbb{R}$ to $Y \in \mathbb{R}$. You might write that like $f: X \rightarrow Y|X,Y \in \mathbb{R}$ or maybe just $f:R \rightarrow R$.
This should say $X\subseteq\mathbb{R}$ instead of $X\in\mathbb{R}$. Also, $R$ in $f:R \rightarrow R$ should probably be $\mathbb{R}$, just like in the first occurrence.
 
Evgeny.Makarov said:
This should say $X\subseteq\mathbb{R}$ instead of $X\in\mathbb{R}$. Also, $R$ in $f:R \rightarrow R$ should probably be $\mathbb{R}$, just like in the first occurrence.

Good points, thank you! Proper notation is important.

Since the OP hasn't responded I will go ahead and answer the original question. $f(x)=x^2+3$ is not surjective for real numbers as it has a global minimum at $y=3$. Any number less than 3 is not mapped to by this function.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top