Surjectivity of x²+3 for Real Numbers: Testing for Surjectivity

Click For Summary
SUMMARY

The function f(x) = x² + 3 is not surjective for real numbers because it has a global minimum at y = 3. This means that there are no real numbers x that can produce output values less than 3. To determine surjectivity, one must check if every element in the codomain Y can be achieved by some input from the domain X. In this case, since the function cannot output values below 3, it fails the surjectivity test.

PREREQUISITES
  • Understanding of function notation and mapping (f: X → Y)
  • Knowledge of surjectivity and its definition in mathematics
  • Familiarity with quadratic functions and their properties
  • Ability to solve equations for specific values
NEXT STEPS
  • Study the properties of quadratic functions and their graphs
  • Learn about injective and bijective functions for a broader understanding of function types
  • Explore the concept of global minima and maxima in calculus
  • Investigate other examples of functions and their surjectivity
USEFUL FOR

Mathematicians, students studying calculus or algebra, and anyone interested in understanding the properties of functions and their mappings.

markosheehan
Messages
133
Reaction score
0
is the function x²+3 surjective for real numbers. how do you test for surjectivity in general?
 
Mathematics news on Phys.org
markosheehan said:
is the function x²+3 surjective for real numbers. how do you test for surjectivity in general?

Hi markosheehan,

Welcome to MHB! :)

Let's say a function $f$ maps some $X \in \mathbb{R}$ to $Y \in \mathbb{R}$. You might write that like $f: X \rightarrow Y|X,Y \in \mathbb{R}$ or maybe just $f:R \rightarrow R$. $f$ is surjective if every element in $Y$ is mapped to by at least one input in $X$. If $Y$ is the output of the function, we need to hit every value in $Y$ in order for $f$ to be surjective.

In this example we have $f(x)=x^2+3$. If $Y$ is all real numbers, can we output to all real numbers? Are there any numbers that we cannot map to?

In general the process of proving a function is subjective when going from $R \rightarrow R$ is to take some random $y \in Y$ and solve for it in terms of $x$. Is that possible here? What happens when you try to solve for $y$?
 
Jameson said:
Let's say a function $f$ maps some $X \in \mathbb{R}$ to $Y \in \mathbb{R}$. You might write that like $f: X \rightarrow Y|X,Y \in \mathbb{R}$ or maybe just $f:R \rightarrow R$.
This should say $X\subseteq\mathbb{R}$ instead of $X\in\mathbb{R}$. Also, $R$ in $f:R \rightarrow R$ should probably be $\mathbb{R}$, just like in the first occurrence.
 
Evgeny.Makarov said:
This should say $X\subseteq\mathbb{R}$ instead of $X\in\mathbb{R}$. Also, $R$ in $f:R \rightarrow R$ should probably be $\mathbb{R}$, just like in the first occurrence.

Good points, thank you! Proper notation is important.

Since the OP hasn't responded I will go ahead and answer the original question. $f(x)=x^2+3$ is not surjective for real numbers as it has a global minimum at $y=3$. Any number less than 3 is not mapped to by this function.
 

Similar threads

Replies
4
Views
4K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K