- #1
eehsun
- 9
- 0
Okay, I know that if I can't get n linearly independent eigenvectors out of a matrix A (∈ℝnxn), it is not diagonalizable
(and that some necessary conditions for diagonalizability in this regard may be being symmetric and/or having distinct eigenvalues.)
This is how things are for the usual eigenvalue decomposition (A=SΛS-1), right?
However, if I am not mistaken, there is not such a restriction present on a matrix for being able to perform the SVD decomposition (A=UΣVT) on it. I mean, every matrix, irrespective of the state of its eigenvectors, can be decomposed into a three parts, one diagonal, two orthogonal, right? So doesn't this mean that every matrix is diagonizable, regardless of its eigenvectors?
Thanks..
Edit:
I know that the answer to the question is no but I don't understand why we don't consider Σ to be a diagonalized form of A.
Please correct me wherever I am mistaken..
Thanks again.. :)
(and that some necessary conditions for diagonalizability in this regard may be being symmetric and/or having distinct eigenvalues.)
This is how things are for the usual eigenvalue decomposition (A=SΛS-1), right?
However, if I am not mistaken, there is not such a restriction present on a matrix for being able to perform the SVD decomposition (A=UΣVT) on it. I mean, every matrix, irrespective of the state of its eigenvectors, can be decomposed into a three parts, one diagonal, two orthogonal, right? So doesn't this mean that every matrix is diagonizable, regardless of its eigenvectors?
Thanks..
Edit:
I know that the answer to the question is no but I don't understand why we don't consider Σ to be a diagonalized form of A.
Please correct me wherever I am mistaken..
Thanks again.. :)
Last edited: