MHB Swag's question at Yahoo Answers regarding maximizing a quadratic function

AI Thread Summary
The discussion revolves around maximizing a quadratic function that describes the distance an automobile can travel on one gallon of gas at varying speeds. The function is given as M(v) = -(1/30)v^2 + (5/2)v, which opens downward, indicating the presence of a maximum value. The most economical speed for maximizing distance is determined to be 37.5 mph, found using the axis of symmetry of the quadratic. At this speed, the maximum distance that can be traveled is calculated to be 46.875 miles. This analysis provides a clear method for solving similar quadratic optimization problems.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Problem Solving - Math?

The number of miles M that a certain automobile can travel on one gallon of gas at a speed of v mph is given by the following formula:
M=-(1/30)v^(2)+(5/2)v for 0 < v < 70

a. For the consumption of one gallon of gasoline, find the most economical speed.

b. Find the maximum number of miles that can be driven at the most economical speed.

I've always been bad at beginning these type of problems. I don't really need an answer unless it isn't too much trouble because I'd have something to check my work with. I'm just wondering how to go about beginning the processes of both of these problems.

Here is a link to the question:

Problem Solving - Math? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Last edited:
Mathematics news on Phys.org
Re: Swag's question at Yahoo! Ansers regarding maximizing a quadratic function

Hello Swag,

We are given a function $M(v)$ that tells us the number of miles that can be traveled at a speed of $v$, where $0<v<70$ (I assume $v$ is in mph.)

This function is:

$\displaystyle M(v)=-\frac{1}{30}v^2+\frac{5}{2}v$

a.) We may observe that this is a quadratic function, whose graph opens downward. The maximum value of such a quadratic occurs on the axis of symmetry, which will be midway between its roots. Factoring, we find:

$\displaystyle M(v)=\frac{1}{30}\left(v(75-v) \right)$

Now, it is easy to see the roots are:

$v=0,\,75$

and so the axis of symmetry is:

$\displaystyle v=\frac{75}{2}=37.5$

Thus, the most economical speed, that is the speed which maximized the distance that can be traveled, is 37.5 mph.

b.) To find this maximum number of miles, we simply need to evaluate:

$\displaystyle M(37.5)=\frac{1}{30}\left(37.5(75-37.5) \right)=\frac{75^2}{2^2\cdot30}=\frac{375}{8}=46.875$

Hence, the maximum number of miles that may be driven is 46.875.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top