A Synchronous to Newtonian gauge

Click For Summary
The discussion focuses on the transformation from synchronous gauge to Newtonian gauge in cosmology, specifically examining the perturbations around the Friedmann-Robertson-Walker (FRW) background. It details the gauge transformations and the resulting equations for the first-order transformations of the metric components. The main challenge is to express the transformation functions T_k and L_k in terms of the functions h_S and h. The discussion concludes with the derived relationships for T and L, indicating that T_k equals h_S' divided by 2k^2, while L_k equals h_S divided by 2k. The overall goal is to clarify the transformation process and derive the necessary functions for accurate gauge transformation.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
In the context of cosmology, you can perturb around the FRW background, conventionally:$$g = a^2(\tau)[(1+2A)d\tau^2 - 2B_a dx^a d\tau -(\delta_{ab} + h_{ab}) dx^a dx^b]$$with ##a,b## being spatial indices only (1,2,3). You can do gauge transformations ##\tilde{x} = x + \xi## of the coordinates. These are typically split into ##\xi^0 \equiv T## and ##\xi^a = \partial^a L + \hat{L}^a##. You find the following first order transformations,\begin{align*}
\tilde{A} &= A - T' - \mathcal{H} T \\
\tilde{B}_a &= B_a + \partial_a T - L_a' \\
\tilde{h}_{ab} &= h_{ab} - 2\partial_{(a} L_{b)} - 2\mathcal{H} T \delta_{ab}
\end{align*}The problem is specifically, is starting from the synchronous gauge, where$$g = a^2(\tau)[d\tau^2 - (\delta_{ab} + h_{ab}) dx^a dx^b]$$with ##h_{ab} = \tfrac{1}{3}\delta_{ab} h + (\hat{k}_a \hat{k}_b - \tfrac{1}{3} \delta_{ab}) h_S## and where ##h, h_S## are functions. And then converting to the Newtonian gauge, where$$\tilde{g} = a^2(\tilde{\tau})[(1+2\Phi)d\tilde{\tau}^2 - (1-2\Psi) \delta_{ab} d\tilde{x}^a d\tilde{x}^b]$$There are supposed to be transformations of the form
$$\tilde{\tau} = \tau + \sum_k T_k(\tau) e^{i\mathbf{k} \cdot \mathbf{x}}, \quad \tilde{\mathbf{x}} = \mathbf{x} + \sum_k L_k (\tau) i\hat{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{x}}$$The problem is to find ##T_k## and ##L_k## in terms of ##h_S## and ##h##. I can re-write the second one of these with ##\xi^j = \partial^j \left[ \sum_k L_k \tfrac{1}{k} e^{i\mathbf{k} \cdot \mathbf{x}} \right]##, in other words my two transformation functions are\begin{align*}
T &= \sum_k T_k e^{i\mathbf{k} \cdot \mathbf{x}} \\
L &= \sum_k L_k \frac{1}{k} e^{i\mathbf{k} \cdot \mathbf{x}}
\end{align*}I must be missing something obvious about how to determine the forms of ##T_k## and ##L_k##. For example, in the synchronous gauge then ##A=0## and we get\begin{align*}
\tilde{A} = 0 - T' - \mathcal{H} T = - \sum_{k} \left[ (T_k' + \mathcal{H} T_k) e^{i\mathbf{k} \cdot \mathbf{x}} \right]
\end{align*}where ##\tilde{A} = \Phi##. I'm supposed to find, apparently, that ##T_k = \tfrac{h_S'}{2k^2}## and ##L_k = \tfrac{h_S}{2k}##. Would someone be able to point me in the right direction?
 
Last edited:
Physics news on Phys.org
I think I've got it, after a bit of clearing things up. As before, we can find all the gauge transformations via ##\Delta \delta (\mathrm{something}) = - \mathcal{L}_{\xi} (\mathrm{something})##. It's easier for now to just suppress the Fourier subscripts and work with a given mode.
$$\delta h_{0i} = -a^2(i k^i T - i\hat{k}^i \dot{L}) = -a^2(k T - \dot{L}) i \hat{k}^i$$
and also the transformation of the function ##h_S##,
$$\delta h_S = -2a^2 Lk$$
In synchronous gauge you have ##h_{0i} = 0## and ##h_S## non-zero, whilst in Newtonian gauge you have ##h_{0i} = 0## still but also ##h^S = 0## (whilst ##h = -6\Psi##).

So ##\delta h_S = -a^2 h_S = -2a^2 Lk## gives ##L = h_S/2k##, and then ##T = \dot{L}/k = \dot{h}_S/2k^2##.
 
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...