A Synchronous to Newtonian gauge

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
In the context of cosmology, you can perturb around the FRW background, conventionally:$$g = a^2(\tau)[(1+2A)d\tau^2 - 2B_a dx^a d\tau -(\delta_{ab} + h_{ab}) dx^a dx^b]$$with ##a,b## being spatial indices only (1,2,3). You can do gauge transformations ##\tilde{x} = x + \xi## of the coordinates. These are typically split into ##\xi^0 \equiv T## and ##\xi^a = \partial^a L + \hat{L}^a##. You find the following first order transformations,\begin{align*}
\tilde{A} &= A - T' - \mathcal{H} T \\
\tilde{B}_a &= B_a + \partial_a T - L_a' \\
\tilde{h}_{ab} &= h_{ab} - 2\partial_{(a} L_{b)} - 2\mathcal{H} T \delta_{ab}
\end{align*}The problem is specifically, is starting from the synchronous gauge, where$$g = a^2(\tau)[d\tau^2 - (\delta_{ab} + h_{ab}) dx^a dx^b]$$with ##h_{ab} = \tfrac{1}{3}\delta_{ab} h + (\hat{k}_a \hat{k}_b - \tfrac{1}{3} \delta_{ab}) h_S## and where ##h, h_S## are functions. And then converting to the Newtonian gauge, where$$\tilde{g} = a^2(\tilde{\tau})[(1+2\Phi)d\tilde{\tau}^2 - (1-2\Psi) \delta_{ab} d\tilde{x}^a d\tilde{x}^b]$$There are supposed to be transformations of the form
$$\tilde{\tau} = \tau + \sum_k T_k(\tau) e^{i\mathbf{k} \cdot \mathbf{x}}, \quad \tilde{\mathbf{x}} = \mathbf{x} + \sum_k L_k (\tau) i\hat{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{x}}$$The problem is to find ##T_k## and ##L_k## in terms of ##h_S## and ##h##. I can re-write the second one of these with ##\xi^j = \partial^j \left[ \sum_k L_k \tfrac{1}{k} e^{i\mathbf{k} \cdot \mathbf{x}} \right]##, in other words my two transformation functions are\begin{align*}
T &= \sum_k T_k e^{i\mathbf{k} \cdot \mathbf{x}} \\
L &= \sum_k L_k \frac{1}{k} e^{i\mathbf{k} \cdot \mathbf{x}}
\end{align*}I must be missing something obvious about how to determine the forms of ##T_k## and ##L_k##. For example, in the synchronous gauge then ##A=0## and we get\begin{align*}
\tilde{A} = 0 - T' - \mathcal{H} T = - \sum_{k} \left[ (T_k' + \mathcal{H} T_k) e^{i\mathbf{k} \cdot \mathbf{x}} \right]
\end{align*}where ##\tilde{A} = \Phi##. I'm supposed to find, apparently, that ##T_k = \tfrac{h_S'}{2k^2}## and ##L_k = \tfrac{h_S}{2k}##. Would someone be able to point me in the right direction?
 
Last edited:
Physics news on Phys.org
I think I've got it, after a bit of clearing things up. As before, we can find all the gauge transformations via ##\Delta \delta (\mathrm{something}) = - \mathcal{L}_{\xi} (\mathrm{something})##. It's easier for now to just suppress the Fourier subscripts and work with a given mode.
$$\delta h_{0i} = -a^2(i k^i T - i\hat{k}^i \dot{L}) = -a^2(k T - \dot{L}) i \hat{k}^i$$
and also the transformation of the function ##h_S##,
$$\delta h_S = -2a^2 Lk$$
In synchronous gauge you have ##h_{0i} = 0## and ##h_S## non-zero, whilst in Newtonian gauge you have ##h_{0i} = 0## still but also ##h^S = 0## (whilst ##h = -6\Psi##).

So ##\delta h_S = -a^2 h_S = -2a^2 Lk## gives ##L = h_S/2k##, and then ##T = \dot{L}/k = \dot{h}_S/2k^2##.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top