System of congruences, not relatively prime moduli

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Prime System
Click For Summary
SUMMARY

The discussion focuses on solving a system of congruences involving non-relatively prime moduli: \(x \equiv 13 \pmod{40}\), \(x \equiv 5 \pmod{44}\), and \(x \equiv 38 \pmod{275}\). The participants outline the steps to determine a solution using the properties of the greatest common divisor (gcd) and the least common multiple (lcm). They establish that a solution exists by confirming that the necessary conditions hold, specifically checking congruences modulo the gcd of the pairs. The final solution is expressed in the form \(x = x_0 + lk\), where \(l\) is the lcm of the moduli.

PREREQUISITES
  • Understanding of modular arithmetic and congruences
  • Familiarity with the Chinese Remainder Theorem (CRT)
  • Knowledge of greatest common divisor (gcd) and least common multiple (lcm)
  • Ability to compute modular inverses
NEXT STEPS
  • Study the Chinese Remainder Theorem for non-coprime moduli
  • Learn how to compute the greatest common divisor (gcd) and least common multiple (lcm)
  • Practice finding modular inverses in various contexts
  • Explore applications of congruences in number theory and cryptography
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving systems of congruences with non-relatively prime moduli.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to solve the following system of congruences:

$$x \equiv 13 \pmod{40} \\ x\equiv 5 \pmod{44} \\ x \equiv 38 \pmod{275}.$$I have thought the following:

$$x \equiv 13 \pmod{40} \Leftrightarrow x \equiv 13 \pmod{2^3 \cdot 5}$$

$$x \equiv 5 \pmod{44} \Leftrightarrow x \equiv 5 \pmod{2^2 \cdot 11}$$

$$x \equiv 38 \pmod{275} \Leftrightarrow x \equiv 38 \pmod{5^2 \cdot 11}$$$$x \equiv 13 \pmod{2^3 \cdot 5} \Leftrightarrow x \equiv 13 \pmod{2^3} \text{ and } x \equiv 13 \pmod{5} \ \ (1)$$

$$x \equiv 5 \pmod{2^2 \cdot 11} \Leftrightarrow x \equiv 5 \pmod{2^2} \text{ and } x \equiv 5 \pmod{11} \ \ (2)$$

$$x \equiv 38 \pmod{5^2 \cdot 11} \Leftrightarrow x \equiv 38 \mod{5^2} \text{ and } x \equiv 38 \pmod{11} \ \ (3)$$

$(1)$: $x \equiv 5 \pmod{2^3}$ and $x \equiv 3 \pmod{5}$

$(2)$: $x \equiv 1 \pmod{2^2}$ and $x \equiv 5 \pmod{11}$

$(3)$: $x \equiv 13 \pmod{5^2}$ and $x \equiv 5 \pmod{11}$Am I right so far?

How can we continue? Can we somehow apply the Chinese Remainder Theorem? (Thinking)
 
Mathematics news on Phys.org
Hey evinda!

Unfortunately we cannot apply CRT directly since the modulo numbers are not co-prime.

We can solve the problem however, by working through the equations as follows:

$x\equiv 13 \pmod{40}\Rightarrow x=13+40k \tag 1$
$x \equiv 5 \pmod{44} \Rightarrow 13+40k \equiv 5 \pmod{44} \Rightarrow 40k \equiv -8 \pmod{44} \tag 2$

Normally we can solve (2) directly by multiplying with the inverse of $40$ with respect to $44$, but in this case this inverse doesn't exist because $40$ and $44$ are not co-prime.
So instead we make an intermediate step, and then get the inverse:
$$40k = -8 + 44\ell \Rightarrow 10k=-2+11\ell \Rightarrow 10k\equiv -2 \pmod{11} \\ \Rightarrow k \equiv [10]^{-1}_{11} \cdot -2 \pmod{11} \Rightarrow k= [10]^{-1}_{11}\cdot -2 + 11m$$
where $[10]^{-1}_{11}$ is the inverse of $10$ modulo $11$.

Can we find $k$ now? And substitute it back into (1)?
Afterwards, we can repeat with the last equation. (Thinking)
 
Some time ago, I made an observation on the S.O.S. forum on what happens with simultaneous congruence equations when the modulo numbers are not coprime: Chinese remainder theorem.

Let’s take the first two equations: $x\equiv13\pmod{40}\equiv5\pmod{44}$. A solution exists if and only if $13\equiv4\pmod d$ where $d=\gcd(40,44)=4$. This holds, and so a solution exists. Noting that $x=93$ satisfies the congruences and $\mathrm{lcm}(40,44)=440$, the general solution of the congruence is $x=93+440k$, $k\in\mathbb Z$.

Now we do the same for the congruences $x\equiv93\pmod{440}\equiv38\pmod{275}$. First check that a solution exists: $\gcd(440,275)=55$, $93\equiv38\pmod{55}$. It does. Then find $l=\mathrm{lcm}(440,275)$, find a particular solution $x_0$ to the congruences, and the general solution will be of the form $x=x_0+lk$, $k\in\mathbb Z$.

$x=1413+2200k$, $k\in\mathbb Z$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
888
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K