System of Equation Challenge (a+b)(b+c)=-1

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge System
Click For Summary
SUMMARY

The discussion focuses on solving a system of equations involving real numbers \(a\), \(b\), and \(c\) defined by \((a+b)(b+c)=-1\), \((a-b)^2+(a^2-b^2)^2=85\), and \((b-c)^2+(b^2-c^2)^2=75\). The solution derived for \((a-c)^2+(a^2-c^2)^2\) is 160. The calculations demonstrate the use of algebraic identities and properties of squares to simplify the expressions effectively.

PREREQUISITES
  • Understanding of algebraic identities and properties of squares
  • Familiarity with solving systems of equations
  • Knowledge of real numbers and their properties
  • Experience with mathematical notation and expressions
NEXT STEPS
  • Study advanced algebra techniques for solving polynomial equations
  • Explore the properties of quadratic forms in multiple variables
  • Learn about mathematical problem-solving strategies on forums like AOPS
  • Investigate similar unsolved problems in algebraic systems
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in problem-solving techniques for complex equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $$a,\,b$$ and $$c$$ are real numbers that satisfy the system of equations below:

$$(a+b)(b+c)=-1\\(a-b)^2+(a^2-b^2)^2=85\\(b-c)^2+(b^2-c^2)^2=75$$

Find $$(a-c)^2+(a^2-c^2)^2$$.
 
Mathematics news on Phys.org
anemone said:
Given that $$a,\,b$$ and $$c$$ are real numbers that satisfy the system of equations below:

$$(a+b)(b+c)=-1\\(a-b)^2+(a^2-b^2)^2=85\\(b-c)^2+(b^2-c^2)^2=75$$

Find $$(a-c)^2+(a^2-c^2)^2$$.
This took me much longer than it should have done!
[sp]$$\begin{aligned}(a-c)^2+(a^2-c^2)^2 &= \bigl((a-b) + (b-c)\bigr)^2 + \bigl((a^2-b^2) + (b^2-c^2)\bigr)^2 \\ &= (a-b)^2 + 2(a-b)(b-c) + (b-c)^2 + (a^2-b^2)^2 + 2(a^2-b^2)(b^2-c^2) + (b^2-c^2)^2 \\ &= (a-b)^2 + (a^2-b^2)^2 + (b-c)^2 + (b^2-c^2)^2 + 2(a-b)(b-c) + 2(a^2-b^2)(b^2-c^2) \\ &= 85 + 75 + 2(a-b)(b-c)\bigl(1 + (a+b)(b+c)\bigr) \\ &= 160 + 2(a-b)(b-c)(1 - 1) = 160 \end{aligned}$$

[/sp]
 
Awesome, as always, Opalg!(Yes)

This actually is an unsolved problem at AOPS forum, and I will share the link of this thread at their site now, and thanks again Opalg for your great insight to attack the problem!(Cool)
 
Opalg said:
This took me much longer than it should have done!
[sp]$$\begin{aligned}(a-c)^2+(a^2-c^2)^2 &= \bigl((a-b) + (b-c)\bigr)^2 + \bigl((a^2-b^2) + (b^2-c^2)\bigr)^2 \\ &= (a-b)^2 + 2(a-b)(b-c) + (b-c)^2 + (a^2-b^2)^2 + 2(a^2-b^2)(b^2-c^2) + (b^2-c^2)^2 \\ &= (a-b)^2 + (a^2-b^2)^2 + (b-c)^2 + (b^2-c^2)^2 + 2(a-b)(b-c) + 2(a^2-b^2)(b^2-c^2) \\ &= 85 + 75 + 2(a-b)(b-c)\bigl(1 + (a+b)(b+c)\bigr) \\ &= 160 + 2(a-b)(b-c)(1 - 1) = 160 \end{aligned}$$

[/sp]
Brilliant!

-Dan
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K