MHB System of Equations: Find Real Numbers $p,q,r,s$

AI Thread Summary
The discussion focuses on solving a system of equations involving four variables: p, q, r, and s. Each equation combines products and sums of these variables, with three equations equating to 9 and one to 1. Participants explore various algebraic techniques to find the real number solutions that satisfy all equations simultaneously. The complexity of the equations suggests potential relationships or constraints among the variables that could simplify the problem. Ultimately, the goal is to identify the specific values of p, q, r, and s that meet the criteria set by the equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real numbers $p,\,q,\,r,\,s$ that satisfy the following system of equations:

$spq+sp+pq+qs+s+p+q=9$

$rsp+rs+sp+pr+r+s+p=9$

$qrs+qr+rs+sq+q+r+s=9$

$pqr+pq+qr+rp+p+q+r=1$
 
Mathematics news on Phys.org
anemone said:
Find all real numbers $p,\,q,\,r,\,s$ that satisfy the following system of equations:

$spq+sp+pq+qs+s+p+q=9$

$rsp+rs+sp+pr+r+s+p=9$

$qrs+qr+rs+sq+q+r+s=9$

$pqr+pq+qr+rp+p+q+r=1$

Add 1 to LHS and RHS of each expression to get
$(1+p)(1+q)(1+s) = 10$
$(1+p)(1+s)(1+r) = 10$
$(1+q)(1+r)(1+s) = 10$
$(1+p)(1+q)(1+r) = 2$

multiply all 3 and then take cube root to get
$(1+p)(1+q)(1+s)(1+r) = 10 \sqrt[3]{2}$

deviding above by 1st 3 equations
hence $(1+r)=(1+q)=(1+p) =\sqrt[3]{2}$

or $r=p=q=\sqrt[3]{2}-1$

and deviding by 4th equation we get

$s = 5\sqrt[3]{2}-1$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top