MHB System of Equations: Find Real Numbers $p,q,r,s$

AI Thread Summary
The discussion focuses on solving a system of equations involving four variables: p, q, r, and s. Each equation combines products and sums of these variables, with three equations equating to 9 and one to 1. Participants explore various algebraic techniques to find the real number solutions that satisfy all equations simultaneously. The complexity of the equations suggests potential relationships or constraints among the variables that could simplify the problem. Ultimately, the goal is to identify the specific values of p, q, r, and s that meet the criteria set by the equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real numbers $p,\,q,\,r,\,s$ that satisfy the following system of equations:

$spq+sp+pq+qs+s+p+q=9$

$rsp+rs+sp+pr+r+s+p=9$

$qrs+qr+rs+sq+q+r+s=9$

$pqr+pq+qr+rp+p+q+r=1$
 
Mathematics news on Phys.org
anemone said:
Find all real numbers $p,\,q,\,r,\,s$ that satisfy the following system of equations:

$spq+sp+pq+qs+s+p+q=9$

$rsp+rs+sp+pr+r+s+p=9$

$qrs+qr+rs+sq+q+r+s=9$

$pqr+pq+qr+rp+p+q+r=1$

Add 1 to LHS and RHS of each expression to get
$(1+p)(1+q)(1+s) = 10$
$(1+p)(1+s)(1+r) = 10$
$(1+q)(1+r)(1+s) = 10$
$(1+p)(1+q)(1+r) = 2$

multiply all 3 and then take cube root to get
$(1+p)(1+q)(1+s)(1+r) = 10 \sqrt[3]{2}$

deviding above by 1st 3 equations
hence $(1+r)=(1+q)=(1+p) =\sqrt[3]{2}$

or $r=p=q=\sqrt[3]{2}-1$

and deviding by 4th equation we get

$s = 5\sqrt[3]{2}-1$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top