MHB System of Equations: Real Number Solutions

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve in real numbers the system of equations

$(3a+b)(a+3b)\sqrt{ab}=14$

$(a+b)(a^2+14ab+b^2)=36$
 
Mathematics news on Phys.org
The first can be "reduced" to a fifth degree polynomial equation and the second to a third degree equation.
 
anemone said:
Solve in real numbers the system of equations

$(3a+b)(a+3b)\sqrt{ab}=14$

$(a+b)(a^2+14ab+b^2)=36$
[sp]Let $x = a+b$, $y = \sqrt{ab}$. Then the equations become $$ y(3x^2 + 4y^2) = 14,$$ $$x(x^2 + 12y^2) = 36.$$ Multiply the first equation by 2, so they become $$x^3 + 12xy^2 = 36,$$ $$6x^2y + 8y^3 = 28.$$ Add them to get $(x+2y)^3 = 36+28=64$, and subtract them to get $(x-2y)^3 = 36-28 = 8.$ Take the cube roots: $x+2y=4$, $x-2y=2.$ Thus $x=3$, $y=1/2$. So $a+b=3$, $ab = 1/4.$ Hence $a,b$ are the roots of the equation $\lambda^2 - 3\lambda + 1/4 = 0$, namely $\frac12(3\pm\sqrt8).$ (Clearly $a$ and $b$ are interchangeable, so those values can be taken either way round.)[/sp]
 
HallsofIvy said:
The first can be "reduced" to a fifth degree polynomial equation and the second to a third degree equation.

Hi HallsofIvy,:)

According to the guidelines thread for posting in this subforum:

This forum is for the posting of problems and puzzles which our members find challenging, instructional or interesting and who wish to share them with others. As such, the OP should already have the correct solution ready to post in the event that no correct solution is given within at least 1 week's time...Responses to these topics should be limited to attempts at a full solution, or requests for clarification addressed to the OP if the problem statement is vague or ambiguous.

When people post problems here in this subforum, they are not seeking help, but rather posting problems for the enjoyment of and challenge to the members of MHB. I do however appreciate the fact that you are trying to help. So, go ahead and have fun with these problems if you like and post full solutions. (Nerd)

Opalg said:
[sp]Let $x = a+b$, $y = \sqrt{ab}$. Then the equations become $$ y(3x^2 + 4y^2) = 14,$$ $$x(x^2 + 12y^2) = 36.$$ Multiply the first equation by 2, so they become $$x^3 + 12xy^2 = 36,$$ $$6x^2y + 8y^3 = 28.$$ Add them to get $(x+2y)^3 = 36+28=64$, and subtract them to get $(x-2y)^3 = 36-28 = 8.$ Take the cube roots: $x+2y=4$, $x-2y=2.$ Thus $x=3$, $y=1/2$. So $a+b=3$, $ab = 1/4.$ Hence $a,b$ are the roots of the equation $\lambda^2 - 3\lambda + 1/4 = 0$, namely $\frac12(3\pm\sqrt8).$ (Clearly $a$ and $b$ are interchangeable, so those values can be taken either way round.)[/sp]

What a nice skill and great solution, Opalg! Thanks for participating!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
7
Views
2K
Replies
6
Views
1K
Replies
1
Views
1K
Replies
10
Views
930
Replies
3
Views
2K
Back
Top